350 rub
Journal Radioengineering №2 for 2024 г.
Article in number:
Relative navigation with Bayesian range estimation
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202402-13
UDC: 629.051
Authors:

A.R. Abdrashitov1

1 Moscow Institute of Physics and Technology (Moscow, Russia)

1 artur.abdrashitov@phystech.edu

Abstract:

The applications of multiple unmanned aerial vehicles (UAVs) require high-precision and reliable relative navigation for flight formation, collision avoidance, and mission performance. Providing high-precision relative navigation is possible by fusing the observations of inertial measurement units, global navigation satellite system receivers, and radio-ranging modules. However, radio-ranging is vulnerable to various types of interference, including additive noise, nonlinear propagation, and multi-user interference. At the same time, UAVs strict energy constraints force us to look for ways to increase interference immunity without increasing the transmitting power of radio-ranging modules. This work is about improving the noise immunity of relative navigation by using a scheme tightly coupled with radio ranging and Bayesian range estimation. We describe the proposed scheme and also carry out a comparative simulation of tightly coupled and conventional, loosely coupled schemes. According to the simulation, a tightly coupled scheme has a quarter smaller RMS error compared to a loosely coupled one at an SNR below -7 dB. The obtained results demonstrate the prospects for further development of the proposed scheme.

Pages: 98-110
References
  1. Abrosimov V. K., Goncharenko V. I. Monitoring chrezvychajnoj situacii gruppoj raznotipnyh bespilotnyh letatel'nyh apparatov. Naukoemkie tehnologii. 2016. T. 17. № 9. S. 39-47 (in Russian).
  2. Mikheev N.A., Polyakov S.A., Ryakhova E.A., Timofeev V.A. An approach to constructing an intellectual distributed decision support system when managing a group of self-controlling robotic agents under the conditions of distabilizing physicians. Informatio-measuring and Control Systems. 2021. V. 26. № 2. Р. 64−71. DOI: 10.18127/j20700814-202102-07.
  3. Abdrashitov A.R. Survey of Relative Navigation Methods for Multi-Agent Unmanned Aerial Vehicle Systems. Mekhatronika. Avtomatizatsiya. Upravlenie. 2023. V. 24. № 7. P. 364-373. DOI: 10.17587/mau.24.364-373.
  4. Gross J.N., Gu Y., Rhudy M.B. Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging. IEEE Transactions on Automation Science and Engineering. 2015. V. 12. № 3. Р. 935-944. DOI: 10.1109/TASE.2014.2383357.
  5. Sun Y. Autonomous Integrity Monitoring for Relative Navigation of Multiple Unmanned Aerial Vehicles. Remote Sensing. 2021. V. 13. № 8. Р. 1483. DOI: 10.3390/rs13081483.
  6. Xiong J., Cheong J.W., Xiong Z., Dempster A. G., Tian S., Wang R. Adaptive hybrid robust filter for multi-sensor relative navigation system //. IEEE Transactions on Intelligent Transportation Systems. 2021. DOI: 10.1109/TITS.2021.3098739.
  7. Xiong J., Cheong J.W., Xiong Z., Dempster A. G., List M., Wöske F., Rievers B. Carrier-phase-based multi-vehicle cooperative positioning using V2V sensors. IEEE Transactions on Vehicular Technology. 2020. V. 69. № 9. Р. 9528-9541. DOI: 10.1109/TVT.2020.3004832.
  8. Shizhuang W., Xingqun Z., Yawei Z., Cheng C., Jiawen S. Highly reliable relative navigation for multi-UAV formation flight in urban environments. Chinese Journal of Aeronautics. 2021. V. 34. № 7. Р. 257-270. DOI: 10.1016/j.cja.2020.05.022.
  9. Rydstrom M., Reggiani L., Strom E.G., Svensson A. Suboptimal soft range estimators with applications in UWB sensor networks. IEEE Transactions on Signal Processing. 2008. V. 56. № 10. Р. 4856-4866. DOI: 10.1109/TSP.2008.928960.
  10. Mazuelas S., Conti A., Allen J.C., Win M.Z. Soft range information for network localization. IEEE Transactions on Signal Processing. 2018. V. 66. № 12. Р. 3155-3168. DOI: 10.1109/TSP.2018.2795537.
  11. Flury M., Merz R., Le Boudec J.Y. Synchronization for impulse-radio UWB with energy-detection and multi-user interference: Algorithms and application to IEEE 802.15. 4a. IEEE Transactions on Signal Processing. 2011. V. 59. № 11. С. 5458-5472. DOI: 10.1109/TSP.2011.2163400.
  12. Lee J.Y., Kim H.S., Choi K.H., Lim J., Chun S., Lee H.K. Adaptive GPS/INS integration for relative navigation. Gps Solutions. 2016. V. 20. Р. 63-75. DOI: 10.1007/s10291-015-0446-4.
  13. Hach R. Symmetric double side two way ranging. IEEE 802.15 WPAN Documents, 15-05-0334-r00. IEEE Computer Society: New York, NY. USA. 2005.
  14. IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs). Title Application of IEEE Std 802.15.4. 2014.
  15. Titterton D. H., Weston J. L. Strapdown Inertial Navigation Technology. 2nd ed. Lon-don, U.K.: Institution of Electrical Engineers. 2004.
  16. Georgy J., Noureldin A., Korenberg M.J., Bayoumi M.M. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation. IEEE Transactions on Intelligent transportation systems. 2010. V. 11. № 4. Р. 856-872. DOI: 10.1109/TITS.2010.2052805.
Date of receipt: 20.12.2023
Approved after review: 26.12.2023
Accepted for publication: 29.01.2024