350 rub
Journal Radioengineering №2 for 2024 г.
Article in number:
Low-coherence interferometry with homodyne demodulation capabilities for distributed fiber-optical sensors
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202402-01
Authors:

P.V. Volkov, D.A. Semikov, O.S. Vyazankin, I.V. Denisov, Y.A. Larin

Abstract:

Distributed fiber-optical sensors (DFOS) achieve the best results while interference registration schemes are used when controlled physical field lead to the fiber length and phase difference. DFOS based on fiber-optical phase-amplitude filters (FOPAF) have a simple and reliable design, consisting of distributed sensing elements (DSE) set. However, the main problem is the stabilization of its characteristics in different areas of DSE. On the other hand, the possibilities of low-coherence interferometry with homodyne light demodulation show the possibilities of stabilizing working points, but in the Michelson fiber-optical interferometric tandem scheme.

The purpose is to substantiate the option of stabilizing the operation of DSE based on FOPAF, using low-coherence interferometry with homodyne demodulation in monitoring spatially distributed physical fields.

The appropriate methods are considered. The analysis of the possible experimental setup based on the low-coherence interferometry with homodyne demodulation in the interferometric tandem scheme in comparison with the variants, based on the low-mode fiber-optical fibers is established. Promising scheme of the experimental installation is presented and the requirements for components are justified. The prospects of using low-coherence interferometry with homodyne demodulation for DFOS based on DSE with FOPAF are shown.

The proposed low-coherence interferometry scheme with homodyne demodulation for DFPS on DSE with FOPAF has high sensitivity, is built on affordable equipment and, accordingly, has a low specific cost for the subsequent development of monitoring system.

Pages: 5-11
References
  1. Denisov I.V., Krjukov I.N., Kiper A.V. Primenenie volokonno-opticheskih izmeritel'nyh setej monitoringa protjazhennyh deformacionnyh polej pri postroenii territorial'no raspredelennyh sistem ohrany. Radiotehnika. 2017. № 1. S. 5-11 (in Russian).
  2. Zhang S., Mei Y., et al. Simultaneous Measurement of Temperature and Pressure Based on Fabry-Perot 273 Interferometry for Marine Monitoring. Sensors. 2022. № 22.
  3. Denisov I.V., Rybalchenko N.A., Sedov V.A. Fiber-optical phase sensitive surface. Laser Sensing, Imaging, and Information Technologies. Proc. SPIE. 2006. V. 6162. P. 127-136.
  4. Denisov I.V., Larin Ja.A. Konfigurirovanie chuvstvitel'nogo jelementa na osnove volokonno-opticheskogo mnogomodovogo interferometra. Foton-jekspress. 2023. № 6(190). S. 316-317 (in Russian).
  5. Yang Y., Wang Y., Chen K. Wideband fiber-optic Fabry-Perot acoustic sensing scheme using high-speed absolute cavity length demodulation. Opt. Express. 2021. V. 29, № 5. Р. 6768.
  6. Digonnet M.J.F., Akkaya O.C., Kino G.S. Imaging and Applied Optics Technical Digest. (STu3F.1).
  7. Kilic O., Digonnet M., Kino G., Solgaard O. External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror. Meas. Sci. Technol. 2007. V. 18. № 10. Р. 3049.
  8. Tong Y., Zeng H., Li L., Zhou Y. Improved phase generated carrier demodulation algorithm for eliminating light intensity disturbance and phase modulation amplitude variation. Appl. Opt. 2012. V. 51. № 29. Р. 6962.
  9. Dandridge A., Tveten A., Giallorenzi T. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE J. Quantum Electron. 1982. V. 18. № 10. Р. 1647.
  10. Chen K., Yu Z., Gong Z., Yu Q. Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer. Opt. Lett. 2018. V. 43. № 20. Р. 5038.
  11. Volkov P., Semikov D., et al. Miniature fiber-optic sensor based on Si microresonator for absolute temperature measurements. Sensors Actuators A: Phys. 2020. V. 316. Р. 112385.
  12. Volkov P., Goryunov A., et al. Fiber-optic temperature sensor based on low-coherence interferometry without scanning. Optik. 2013. V. 124. № 15. Р. 1982.
  13. Yu B., Wang A., Pickrell G.R. Analysis of Fiber Fabry-Pérot Interferometric Sensors Using Low-Coherence Light Sources. J. Lightwave Technol. 2006. V. 24. № 4. Р. 1758.
  14. Volkov P., Lukyanov A., et al. Fiber Optic Impact Location System Based on a Tracking Tandem Low-Coherence Interferometer. Sensors. 2023. V. 23. № 2. Р. 772.
  15. Volkov P.V., Semikov D.A., Vjazankin O.S. i dr. Metod detektirovanija malyh kolebanij na osnove gomodinnoj demoduljacii s tandemnym nizkokogerentnym interferometrom. ZhTF. 2023. Vyp. 7. S.959 (in Russian).
  16. Dandridge A., Tveten A.B., Gialloronzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Journal of Quantum Electronics. 1982. V. 18. Iss.10. P. 1647-1653.
Date of receipt: 26.12.2023
Approved after review: 10.01.2024
Accepted for publication: 29.01.2024