350 rub
Journal Radioengineering №12 for 2024 г.
Article in number:
X-ray tubes: current applications and research
Type of article: overview article
DOI: 10.18127/j00338486-202412-13
UDC: 537.533.2
Authors:

E.P. Sheshin1, A.A. Alyabyev2, A.D. Kibirsky3, D.M. Fun4

1-4 Moscow Institute of Physics and Technology (National Research University) (Moscow, Russia)

1sheshin.ep@mipt.ru; 2aliabev.aa@phystech.edu; 3andrejkibirskij@gmail.com; 4phungducmanh@phystech.edu

Abstract:

Applications of X-ray tubes covers a large number of problems in modern science, industry, medicine, and agriculture. Modern advances in the construction of various X-ray tubes make it possible to solve a wide range of problems: from studying the mechanism of formation of chemical bonds to obtaining images of human organs. This paper provides an overview of modern areas of application of X-ray tubes, as well as the main directions for improving X-ray tubes through a patent search. Review modern applications of X-ray tubes. We have analyzed some areas for the use of X-ray tubes, and also characterized the main directions for improving the designs of X-ray tubes. X-ray tubes are used everywhere, and their areas of application are increasing. The work provides an analysis of the application and creation of X-ray tubes.

Pages: 146-157
For citation

Sheshin E.P., Alyabyev A.A., Kibirsky A.D., Fun D.M. X-ray tubes: current applications and research. Radiotekhnika. 2024. V. 88. № 12.
P. 146−157. DOI: https://doi.org/10.18127/j00338486-202412-13 (In Russian)

References
  1. Attwood D. Soft x-rays and extreme ultraviolet radiation: principles and applications.  Cambridge university press. 2000. ‎470 p.
  2. Bugaev A.S., Eroshkin P.A., Roman'ko V.A., Sheshin E.P. Malomoshhnye rentgenovskie trubki (sovremennoe sostojanie). Uspehi fizicheskih nauk. 2013. T. 183(7). S. 727-740. https://doi.org/10.3367/UFNr.0183.201307c.0727 (in Russian)
  3. Assad-Bustillos M., Guessasma S., Réguerre A.L., Della Valle G. Impact of protein reinforcement on the deformation of soft cereal foods under chewing conditions studied by X-ray tomography and finite element modelling. Journal of Food Engineering. 2020. V. 286. Р. 110108. https://doi.org/10.1016/j.jfoodeng.2020.110108
  4. Williams R. A., Jia X. Tomographic imaging of particulate systems. Advanced Powder Technology. 2003. V. 14. Is. 1. P. 1-16. https://doi.org/10.1163/156855203762469867.
  5. Schoeman L., du Plessis A., Manley M. Non-destructive characterisation and quantification of the effect of conventional oven and forced convection continuous tumble (FCCT) roasting on the three-dimensional microstructure of whole wheat kernels using X-ray micro-computed tomography (μCT). Journal of Food Engineering. 2016. V. 187. P. 1-13. https://doi.org/10.1016/j.ifset.2017.07.021.
  6. Malzer W., Schlesiger C., Kanngießer B. A century of laboratory X-ray absorption spectroscopy – A review and an optimistic outlook. Spectrochimica Acta Part B: Atomic Spectroscopy. 2021. V. 177. Р. 106101. https://doi.org/10.1016/j.sab.2021.106101.
  7. Szlachetko J., Sá J, X-Ray Spectroscopy – The Driving Force to Understand and Develop Catalysis. Advanced Catalytic Materials. Photocatalysis and Other Current Trends. 2016. https://doi.org/10.1016/j.ccr.2020.213466.
  8. Van Dyck T., Verboven P., Herremans E. Defraeye, T.; Van Campenhout L., Wevers M., Claes J., Nicolai, B. Characterisation of structural patterns in bread as evaluated by X-ray computer tomography. Journal of Food Engineering. 2014. V. 123. P. 67-77. https://doi.org/10.1016/j.jfoodeng.2013.09.017.
  9. Pushkar Y., Long X., Glatzel P., Brudvig G.W., Dismukes G.C., Collins T.J., Yachandra V.K., Yano J., Bergmann U. Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X‐ray Emission Spectroscopy. Angewandte Chemie International Edition. 2010. V. 49(4). P. 800-803. https://doi.org/10.1002/anie.200905366.
  10. Tromp M., Moulin J., Reid G., Evans J. Cr K‐Edge XANES Spectroscopy: Ligand and Oxidation State Dependence – What is Oxidation State? AIP Conference Proceedings. American Institute of Physics. 2007. V. 882(1). P. 699-701. DOI: 10.1063/1.2644637.
  11. Moya-Cancino J.G., Honkanen A.-P., Ad van der Eerden M. J., Schaink H., Folkertsma L., Ghiasi M. Dr., Longo A.Dr., Frank de Groot M.F. Prof. Dr., Meirer F.Dr., Huotari S. Prof. Dr., Weckhuysen B.M. Prof. Dr. In‐situ X‐Ray Absorption Near Edge Structure Spectroscopy of a Solid Catalyst using a Laboratory‐Based Set‐up. Chem. Cat. Chem. 2019. V. 11(3). P. 1039-1044. https://doi.org/10.1002/cctc.201801822.
  12. Moniek Tromp Dr., Jeroen A. van Bokhoven Dr., Anne M. Arink Dr., Johannes H. Bitter Dr., Gerard van Koten Prof. Dr., Diederik C. Koningsberger Prof. Dr. ir. Cu K-Edge EXAFS Characterisation of Copper(I) Arenethiolate Complexes in both the Solid and Liquid State: Detection of Cu–Cu Coordination. Chemistry: A European Journal. 2002. V. 8(24). P. 5667-5678. https://doi.org/10.1002/1521-3765(20021216)8:24<5667::AID-CHEM5667>3.0.CO;2-O.
  13. Tromp M. Catalysis seen in action. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. V. 373(2036). https://doi.org/10.1098/rsta.2013.0152.
  14. Dos Anjos, M., Lopes, R., de Jesus, E. F., Assis, J., Cesareo, R., Barradas, C.A. Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy. 2000. V. 55(7). P. 1189-1194. https://doi.org/10.1016/S0584-8547(00)00165-8.
  15. Corrales L., Valencic L., Costantini E., Garcia J., Gatuzz E., Kallman T., Lee J., Schulz N., Zeegers S., Canizares C., Draine B., Heinz S., Hodges-Kluck E., Jenkins E. B., Paerels F., Smith R. K., Temim T., Wilms J., Savin D. W. Astro 2020: Astromineralogy of interstellar dust with X-ray spectroscopy. Astrophysics. Earth and Planetary Astrophysics Preprint. 2019. http://arxiv.org/abs/1904.12790.
  16. Sikora M., Juhin A., Simon G., Zając M., Biernacka K., Kapusta Cz., Morellon L., Ibarra M. R., Glatzel P. 1s2p resonant inelastic x-ray scattering-magnetic circular dichroism: A sensitive probe of 3d magnetic moments using hard x-ray photons. Journal of Applied Physics. 2012. V. 111(7). https://doi.org/10.1063/1.3670064.
  17. Arenholz E., Gerrit van der Laan, Chopdekar R.V., Suzuki Y. Angle-dependent Ni2+ x-ray magnetic linear dichroism: interfacial coupling revisited. Physical review letters. 2007. V. 98(19). https://doi.org/10.1103/PhysRevLett.98.197201.
  18. De Groot F., Vankó G., Glatzel P. The 1s x-ray absorption pre-edge structures in transition metal oxides. Journal of Physics: Condensed Matter. 2009. V. 21(10). https://doi.org/10.1088/0953-8984/21/10/104207.
  19. Jaiswal A.K., Tiwari P., Kumar S., Gupta D., Khanna A., Rodrigues J.J. Identifying pneumonia in chest X-rays: A deep learning approach. Measurement. 2019. V. 145. P. 511-518. https://doi.org/10.1016/j.measurement.2019.05.076.
  20. Pham T.D. Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? Health Information Science and Systems. 2021. V. 9(1). https://doi.org/10.1007/s13755-020-00135-3.
  21. Pat. CN104576261A China, H01J9/022. Cold cathode X-ray tube manufacturing process based on carbon nano-tubes.  Pang Junchao, Chen Yan; current assignee Shenzhen Institute of Advanced Technology of CAS; app. 31.12.2014.; pub. 29.04.2015. https://patents.google.com/patent/CN104576261A/en?oq=cn104576261.
  22. Pat. CN111554558A China, H01J35/065. Field emission cold cathode soft X-ray tube using carbon nano tube.  Shen Yunfeng, Ke Bingyu, Shen Long, Zhu Fuxu, Guangtong; current assignee Lighttech Kunshan Photoelectric Technology Co ltd; app. 30.04.2020.; pub. 18.08.2020. https://patents.google.com/patent/CN111554558A/en?oq=cn111554558.
  23. Pat. CN104599926A China, H01J35/06, H01J35/16. Negative electron affinity cold cathode X-ray tube.  Wang Wangping, Ma Jianyi, Shen Tujun; current assignee CETC 55 Research Institute; app. 22.12.2014.; pub. 06.05.2015. https://patents.google.com/pa-tent/CN104599926A/en?oq=cn104599926.
  24. Pat. CN102800546A China, H01J/35. Cluster tip wavefront field emission cold cathode X-ray tube with counterpoint hole control strip.  Tan Dagang; current assignee Huijia Biological Instrument (shanghai) Co Ltd; app. 23.08.2012.; pub. 28.11.2012. https://patents.google.com/patent/CN102800546A/en?oq=cn102800546.
  25. Pat. CN112017930A China, H01J35/06. Three-pole grid-control cold cathode X-ray tube.  Zhang Guoguang, Tang Lihua; current assignee China Institute of Atomic of Energy; app. 22.07.2022.; pub. 01.12.2022. https://patents.google.com/pa-tent/CN112017930A/en?oq=cn112017930.
  26. Pat. CN102665370A China, H05G1/32, H01J1/304. Field emission x-ray generating apparatus.  Zhang Guoguang, Tang Lihua; current assignee FUTEX Co Ltd ONIZUKA GLASS CO Ltd Takasago Thermal Engineering Co Ltd; app. 28.12.2011.; pub. 12.09.2012. https://patents.google.com/patent/CN102665370A/en?oq=cn102665370.
  27. Pat. CN101183631A China, H01J35/06. Method of producing carbon nano-tube array field emission cathode.  Fang Guo, Li Chun, Liu Nishuang, Yang Xiaoxia, Yuan Longyan; current assignee Wuhan University WHU; app. 16.11.2007.; pub. 21.05.2008. https://patents.google.com/patent/CN101183631A/en?oq=cn101183631.
  28. Pat. US20130028386A1 United States, H01J35/04. Electric field emission x-ray tube apparatus equipped with a built-in getter.  Jin Woo JEONG, Jun Tae Kang, Yoon Ho Song, Jae Woo Kim; current assignee Electronics and Telecommunications Research Institute ETRI; app. 24.07.2012.; pub. 31.01.2013. https://patents.google.com/patent/US20130028386A1/en?oq=us20130028386.
  29. Pat. US20110116603A1 United States, H01J35/064, H01J35/065. Microminiature x-ray tube with triode structure using a nano emitter.  Dae Jun KIM, Yoon Ho Song, Jin Woo JEONG; current assignee Electronics and Telecommunications Research Institute ETRI; app. 13.11.2008.; pub. 19.05.2011. https://patents.google.com/patent/US20110116603A1/en?oq=us20110116603.
  30. Pat. CN101834108A China, H01J35/064, H01J35/065. X-ray tube for emission in carbon nanometer cathode field.  Wang Qizhi, Xu Weiping, Liang Ze, Chen Li, Bu Guowei, Liu Jianying, Ren Xiang; current assignee First Research Institute of Ministry of Public Security Beijing Zhongdun Anmin Analysis Technology Co Ltd; app. 11.03.2009.; pub. 15.09.2010. https://patents.google.com/pa-tent/CN101834108A/en?oq=cn101834108.
  31. Pat. US20110087062A1 United States, H01J35/065. Miniature x-ray tube for a catheter.  M. Hörnig, M. Maschke; current assignee Siemens Healthcare GmbH; app. 08.10.2010.; pub. 14.04.2011. https://patents.google.com/patent/US20110087062A1/en?oq=us20110087062.
  32. Pat. CN102789943A China, H01J/35. X-ray tube system and operation method thereof.  Dai Qiusheng; current assignee Suzhou Institute of Biomedical Engineering and Technology of CAS; app. 18.05.2011.; pub. 21.11.2012. https://patents.google.com/pa-tent/CN102789943A/en?oq=cn102789943.
  33. Pat. CN205508764U China, H01J/35. Multianode X-ray source.  Sun Jiang, Hu Yang, Zhang Jinhai, Cai Dan, Sun Jianfeng, Su Zhaofeng; current assignee Northwest Inst Nuclear Tech; app. 29.03.2016.; pub. 24.08.2016. https://patents.google.com/pa-tent/CN205508764U/en?oq=cn205508764.
  34. Pat. CN209641620U China, H01J/35. A kind of X-ray tube of controllable focus.  Wang Xiao, Qiu Longhua, Fang Qi, Ye Huawei, Wang Shangjie, Li Debao; current assignee Maimer Vacuum Technology Wuxi Co Ltd; app. 26.04.2019.; pub. 15.11.2019. https://patents.google.com/patent/CN209641620U/en?oq=cn209641620.
  35. Pat. US20130336459A1 United States, H01J35/147, H01J3/14, H01J35/08. Field emission x-ray tube and method of focusing electron beam using the same / Sungyoul Choi, Yoon-Ho Song; current assignee Electronics and Telecommunications Research Institute ETRI; app. 14.03.2013.; pub. 19.12.2013. https://patents.google.com/patent/US20130336459A1/en?oq=us20130336459.
  36. Pat. US20070076849A1 United States, H01J35/186. X-ray tube cathode with reduced unintended electrical field emission / E. Bard, C. Jensen, S. Ogden, S. Liddiard; current assignee Moxtek Inc; app. 28.09.2006.; pub. 05.04.2007. https://patents.google.com/pa-tent/US20070076849A1/en?oq=us20070076849.
  37. Pat. US20170213685A1 United States, H01J37/063. X-ray tube including hybrid electron emission source / Jun Tae Kang, Yoon-Ho Song, Jae-woo Kim, Jin-woo Jeong; current assignee Electronics and Telecommunications Research Institute ETRI; app. 10.08.2016.; pub. 27.07.2017. https://patents.google.com/patent/US20170213685A1/en?oq=us20170213685.
  38. Pat. CN103779158A China, H01J35/065. Field emission electron source for X-ray tube / Li Dongsong, Zhang Jian; current assignee Shanghai United Imaging Healthcare Co Ltd; app. 23.10.2012.; pub. 07.05.2014. https://patents.google.com/pa-tent/CN103779158A/en?oq=cn103779158.
Date of receipt: 06.02.2024
Approved after review: 12.02.2024
Accepted for publication: 25.11.2024