350 rub
Journal Radioengineering №12 for 2024 г.
Article in number:
Direct digital synthesizer modeling at frequency images
Type of article: scientific article
DOI: 10.18127/j00338486-202412-09
UDC: 621.373.52
Authors:

A.V. Korolev1, S.G. Rykov2

1,2 «JSC All-Russian Scientific Research Institute of Radio Engineering» (Moscow, Russia)

1 teleret@mail.ru; 2 brig001@mail.ru

Abstract:

An attempt to implement AD9912 DDS at first and second image frequency revealed a noticeable discrepancy of calculated phase noise with the measurement results, as particular the output phase noise at 1080 MHz was less then at 840 MHz with clock frequency 1 GHz. To mitigate this mismatch a new reconstruction pulse model was developed in assumption that D/A converter of DDS consists of two interleaved converters active for half a clock time. The results of calculations of frequency response both with phase and amplitude noise spectral density with proposed model are given. The experiment demonstrates a good match with model for phase and amplitude noise up to fifth frequency image. Measurements made with DDS AD9910 show similar results. At the same time, AD9914 has a normal frequency response, and its phase noise changes as f 2 up to 3,5 GHz with clock frequency 1 GHz.

Pages: 103-118
For citation

Korolev A.V., Rykov S.G. Direct digital synthesizer modeling at frequency images. Radiotekhnika. 2024. V. 88. № 12. P. 103−118. DOI: https://doi.org/10.18127/j00338486-202412-09 (In Russian)

References
  1. Ash M., Brennan P.V. Transmitter noise considerations in super‐Nyquist FMCW radar design. Electronics Letters. 2015. V. 51. № 5. Р. 413-415.
  2. Köhler A. et al. mGEODAR - A mobile radar system for detection and monitoring of gravitational mass-movements. Sensors. 2020. V. 20. № 21. Р. 6373.
  3. Romashov V.V., Yakimenko K.A., Doktorov A.N. Wideband high-speed DAC-based frequency synthesizer. Journal of Physics: Conference Series. IOP Publishing. 2022. V. 2388. № 1. С. 012114.
  4. Schindler F., et al. Super-Nyquist Direct Digital Synthesis Enables Next Generation Radio Systems. Microwave Journal. 2020. V. 63. № 9.
  5. Maksimovskij D.Ju., Nikonov I.V. Issledovanie i analiz harakteristik funkcional'nyh uzlov sintezatora chastot. Nauka, obrazovanie, biznes. 2014. S. 336-338 (in Russian).
  6. Gentile K. Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal. Analog Devices, Inc. 2007.
  7. Romashov V.V. i dr. Jeksperimental'naja proverka modelej shumovyh harakteristik integral'nyh cifrovyh vychislitel'nyh sintezatorov kompanii Analog Devices. Radiotehnicheskie i telekommunikacionnye sistemy. 2016. № 3(23). S. 15-23 (in Russian).
  8. Clara M. High-performance D/A-converters: Application to digital transceivers. Springer Science & Business Media. 2012. V. 36.
  9. Sergienko A.B. Cifrovaja obrabotka signalov: Ucheb. posobie. Izd. 3-e. SPb: BHV-Peterburg. 2011. 768 s. (in Russian).
  10. Koroljov A.V., Rykov S.G. Fazovye shumy cifrovyh vychislitel'nyh sintezatorov pri izmenenii chastot taktovogo i vyhodnogo kolebanija. Radiotehnika. 2021. T. 85. № 5. S. 100-116. DOI: https://doi.org/10.18127/j00338486-202105-10 (in Russian).
  11. Chenakin A. Frequency Synthesizers Concept to Product. Artech House. 2011.
  12. Patent №2774401 (RF), H03L 7/18. Gibridnyj mnogokol'cevoj sintezator chastot. A.V. Korolev i dr. Opubl. bjul. №18; 21.06.2022 (in Russian).
  13. Chen S.Y.S., Kim N.S., Rabaey J.M. Multi-mode sub-Nyquist rate digital-to-analog conversion for direct waveform synthesis. IEEE Workshop on Signal Processing Systems. IEEE. 2008. P. 112-117.
  14. Hramov K.K., Romashov V.V. Sravnitel'nyj analiz rezhimov raboty bystrodejstvujushhih CAP. Radiotehnicheskie i telekommunikacionnye sistemy. 2018. № 4(32). S. 44-54 (in Russian).
  15. Koroljov A.V., Rykov S.G. Analiz fazovyh i amplitudnyh shumov mnogorezhimnyh cifro-analogovyh preobrazovatelej v rezhimah RZ, NRZ i RF. Radiotehnika. 2024. T. 88. № 2. S. 138−155. DOI: https://doi.org/10.18127/j00338486-202402-17 (in Russian).
  16. Koroljov A.V., Rykov S.G. Jeksperimental'noe opredelenie kojefficientov formuly dlja rascheta fazovyh shumov cifrovyh vychislitel'nyh sintezatorov. Radiotehnika. 2022. T. 86. № 6. S.96−108. DOI: https://doi.org/10.18127/j00338486-202206-13 (in Russian).
  17. Calosso C.E., Rubiola E. Phase noise and jitter in digital electronics. 2014 European Frequency and Time Forum (EFTF). IEEE. 2014. P. 374-376.
  18. Lin W.T., Huang H.Y., Kuo T.H. A 12-bit 40 nm DAC Achieving SFDR > 70 dB at 1.6 GS/s and IMD<–61dB at 2.8 GS/s with DEMDRZ Technique. IEEE Journal of Solid-State Circuits. 2014. V. 49. № 3. P. 708-717.
  19. Bugeja A.R. et al. A 14-b, 100-MS/s CMOS DAC designed for spectral performance. IEEE Journal of Solid-State Circuits. 1999. V. 34. № 12. P. 1719-1732.
  20. Koroljov A.V., Rykov S.G. Jeksperimental'noe issledovanie fazovyh i amplitudnyh shumov mnogorezhimnyh cifro-analo-govyh preobrazovatelej v rezhimah RZ, NRZ i RF. Radiotehnika. 2024. T. 88. № 7. S. 177−194. DOI: https://doi.org/10.18127/j00338486-202407-28 (in Russian).
  21. Adams R., Nguyen K.Q. A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling. IEEE Journal of Solid-State Circuits. 1998. V. 33. № 12. P. 1871-1878.
  22. Zhalud V., Kuleshov V.N. Shumy v poluprovodnikovyh ustrojstvah. Pod obshhej red. A.K. Naryshkina. Sovmestnoe sovetsko-cheshskoe izdanie. M.: Sovetskoe radio. 1977. 416 s. (in Russian).
Date of receipt: 01.11.2023
Approved after review: 09.11.2023
Accepted for publication: 25.11.2024