350 rub
Journal Radioengineering №11 for 2024 г.
Article in number:
Emergency decontamination of pathogenic microflora using electromagnetic radiation
Type of article: short message
DOI: 10.18127/j00338486-202411-22
UDC: 621.37, 621.385.69, 621.373
Authors:

V.M. Doroshenko1, V.A. Kirkitsa2

1,2 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

1 dorvalentina9@gmail.com; 2skrkts@mail.ru

Abstract:

An important problem of health care has always been ensuring safety during surgical and other manipulations. Currently, many methods are known for disinfecting medical objects based on treatment with steam, hot air, ultraviolet, X-ray and electromagnetic radiation. The listed methods have both their obvious advantages and unavoidable disadvantages, which are described in detail in the work [1-12]. A promising method is the sterilization of medical instruments using a microwave field. Patents for similar development methods [13,14] were registered in the 90s of the last century, however, in the shown processing technologies it was not possible to avoid sparking, which excluded the processing of metal instruments. In turn, traditional methods used in hospitals, due to the effect of high temperatures, do not allow the processing of plastic instruments. This problem was solved with the help of the developed microwave sterilizer, which carries out decontamination due to the effect of an electromagnetic field on microflora, and not due to the effect of high temperatures.

Pages: 186-189
For citation

Doroshenko V.M., Kirkitsa V.A. Emergency decontamination of pathogenic microflora using electromagnetic radiation. Radiotekhnika. 2024. V. 88. № 11. P. 186−189. DOI: https://doi.org/10.18127/j00338486-202411-22 (In Russian)

References
  1. Lyscov V. N., Frank-Kameneckij D. A., Shhedrina M. V. Dejstvie santimetrovyh radiovoln na vegetativnye kletki, spory i transformirujushhuju DNK. Biofizika. 1965. T. 10. S. 105 (in Russian).
  2. Presman A. S. Jelektromagnitnye polja v biosfere. M.: Znanie. 1971. T. 63. S. 4 (in Russian).
  3. Devjatkov N. D. Vlijanie jelektromagnitnogo izluchenija millimetrovogo diapazona voln na biologicheskie ob’ekty. Uspehi fizicheskih nauk. 1973. T. 110. № 7. S. 453-454 (in Russian).
  4. Ismailov Je. Sh. Biofizicheskoe dejstvie SVCh-izluchenij. M.: Jenergoatomizdat. 1987. 143 s. (in Russian).
  5. Beckij O. V., Golant M. B., Devjatkov N. D. Millimetrovye volny v biologii. M.: Znanie. 1988. 62 s. (in Russian).
  6. Panasenkov V.I., Sadchikova O.A., Ignatov V.V., Pidenko A.P. Dejstvie moshhnogo JeMP s chastotoj 2375 MGc na mikroorganizmy. Biologicheskoe dejstvie jelektromagnitnyh polej: tezisy dokladov. Pushhino. 1982. S.2 6 (in Russian).
  7. Bol'shakov M.A., Bugaev S.P., Goncharik A.O., Gunin A.V., Evdokimov E.V., Klimov A.I., Korovin S.D., Pegel I.V., Rostov V.V. Effect of high-power microwave radiation with nanosecond pulse duration on some biological objects. Biophysics. Obshhestvo s ogranichennoj otvetstvennost'ju Mezhdunarodnaja akademicheskaja izdatel'skaja kompanija «Nauka/Interperiodika». 2000. V. 370. S. 21-24.
  8. Shaw P., Kumar N., Mumtaz S., Lim J.S., Jang J.H., Kim D., Sahu B.D., Bogaerts A., Choi E.H. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Scientific Reports. 2021. V. 11. № 1. Р. 14003.
  9. Kozempel M., Cook R.D., Scullen O.J. Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. Journal of Food Processing and Preservation. 2000. V. 24. № 4. Р. 287-301.
  10. Loghavi L., Sastry S. K., Yousef A.E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology progress. 2009. V. 25. № 1. Р. 85-94.
  11. Guljaev Ju.V., Cherepenin V.A. O vozmozhnosti ispol'zovanii moshhnyh jelektromagnitnyh impul'sov dlja obezzarazhivanija bakteriologicheski zagrjaznennyh ob#ektov. Zhurnal radiojelektroniki. 2020. № 4. S. 11-11 (in Russian).
  12. Gulyaev Y.V., Taranov I.V., Cherepenin V.A. The use of high-power electromagnetic pulses on bacteria and viruses. Physics. Pleiades Publishing. 2020. V. 65. Р. 230-232.
  13. Patent (US) № 5019359. Method and apparatus’ for rapid sterilizing of material. B.S. Kutnez, D.A. Latowicki. Filed 22.11.1989; Pub. 28.05.1991.
  14. Patent (US) № 5019344. Method for sterilizing articles’ such as dental handpieces’. B.S. Kutnez, D.A. Latowicki. Filed 21.04.1988; Pub. 28.05.1991.
  15. Baiburin V.B., Komarov V.V., Meshchanov V.P. Modeling of electrodynamic parameters of microwave sterilizer. Physics of Wave Processes and Radio Engineering Systems. 2022. V. 25. № 4. P. 52-58.
  16. Baiburin V.B., Komarov V.V., Meshchanov V.P. Mathematical modeling of electromagnetic fields in the operating environment of a microwave sterilizer of surgical instruments. Biomedical Radio Electronics. 2023. V. 26. № 6. P. 48-53.
  17. Baiburin V.B., Meshchanov V.P., Luneva I.O., Komarov V.V., Nikiforov A.A., Fomin A.A., Doroshenko V.M., Balakin M.I., Kirkitsa V.A. Experimental results of microwave sterilization of medical instruments. Biomedical Radio Electronics. 2023. V. 26. № 6. P. 77-82.
  18. Eremin V.P., Baiburin V.B., Meshchanov V.P., Komarov V.V., Pakhomov Y.A., Ershov A.S., Doroshenko V.M., Nikiforov A.A., Balakin M.I. Electrodynamic and performance characteristics of a microwave sterilizer with a radiation source in the form of two paired magnetrons. Biomedical Radio Electronics. 2023. V. 26. № 6. P. 61-67.
Date of receipt: 31.10.2024
Approved after review: 05.11.2024
Accepted for publication: 08.11.2024