350 rub
Journal Radioengineering №11 for 2024 г.
Article in number:
Development of broadband high-precision microwave analyzer based on multi-probe measuring line
Type of article: scientific article
DOI: 10.18127/j00338486-202411-19
UDC: 654.19:621.396.97:621.317.75
Authors:

 V.P. Meschanov1, A.A. L’vov2, B.M. Kats3, P.A. L’vov4, K.A. Sayapin5, V.M. Doroshenko6

1,3-5 NIKA-Microwave, Ltd. (Saratov, Russia)

2,6 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

1,3 nika373@bk.ru; 2 alvova@mail.ru; 4 peter.lvov@gmail.com; 5 sayapin.k.a.@mail.ru; 6 dorvalentina9@gmail.com 

Abstract:

Objectives. The actual technical implementation problem of broadband reflectometers based on multi-probe transmission lines (MTL) is investigated.

Methods. The analysis of optimal methods for processing output digital signals from quadric detectors of MTL probes is performed. Methods for increasing the accuracy of measurements using this reflectometer in narrow and wide frequency ranges based on the optimal choice of a limited number of probes arrangement along the line path are proposed.

Main results. Reflectometer designs with a limited number of probes (no more than 8) are obtained, allowing measurements with potentially achievable accuracy in a frequency range of up to 6 octaves. The created experimental samples of narrowband and wideband automatic network analyzers based on MTL are described and their accuracy characteristics are demonstrated, which confirmed the theoretical conclusions.

Conclusion. Conclusions that show areas of application of the developed broadband high-precision microwave analyzer based on multi-probe measuring line was formulated.

Pages: 156-171
For citation

Meschanov V.P., L’vov A.A., Cats B.M., L’vov P.A., Sayapin K.A., Doroshenko V.M. Development of broadband high-precision microwave analyzer based on multi-probe measuring line. Radiotekhnika. 2024. V. 88. № 11. P. 156−171. DOI: https://doi.org/10.18127/j00338486-202411-19 (In Russian)

References
  1. Engen G.F., Hoer C.A. Application of an Arbitrary Six-Port Junction to Power Measurement Problems. IEEE Trans. on Instrum. and Meas., 1972. V. 21. № 5. P. 470-474.
  2. Gupta K., Gardzh R., Chadha R. Mashinnoe proektirovanie SVCh-ustrojstv. M.: Radio i svjaz'. 1987. 432 s. (in Russian).
  3. Jianhua K., Fangyi S., Weidong Z., Jie P. Application of Network Analyzer based on the Automatic Control of LabVIEW in Radio and Television Test. Proc. 2013 Int. Symp. on Biometrics and Security Technologies. Chengdu. N.Y. IEEE. 2013. P. 14–19. DOI: 10.1109/ISBAST.2013.5.
  4. Hanson E.R.B., Riblet G.P. An Ideal Six-Port Network Consisting of a Matched Reciprocal Lossless Five-Port and a Perfect Directional Coupler. IEEE Trans. of Microwave Theory and Tech., 1983. V. MTT-31. № 3. P. 284-288.
  5. Kabanov D.A., Nikulin S.M., Petrov V.V., Salov A.N. Development of Automatic Microwave Circuit Analyzers with 12-pole Reflectometers. Measurement Techniques. 1985. V. 31. Is. 10. P. 875-878.
  6. Madonna G., Ferrero A., Pirola M. Design of a Broadband Multiprobe Reflectometer. IEEE Trans. Instrum. Meas. 1999. V. IM-48. Is. 4. P. 622-625.
  7. Ghannouchi F.M., Mohammadi A. The Six-Port Technique with Microwave and Wireless Applications. Boston. London: Artech House. 2009. 245 p.
  8. Peng H., Yang Z.Q., Yang T. Design and Implementation of an Ultra-Wideband Six-Port Network. Progress in Electromagnetics Research. 2012. V. 131. P. 293–310.
  9. Xiao F., Ghannouchi F.M., Yakabe T. Application of a Six-Port Wave-Correlator for a Very Low Velocity Measurement Using the Doppler Effect. IEEE Trans. Instr. Meas. 2003. V. 52. № 2. P. 546-554.
  10. Li S., Воsisiо R.G. Calibration of Multiport Reflectometers by Means of Four Open Short Circuits. IEEE Trans. Microwave Theory Tech. 1982. V. MTT-30. Is. 7. P. 1085-1090.
  11. Griffin E.J. Six-Port Reflectometers and Network Analysers. IEE Vacation School Lecture Notes on Microwave Measurement. London Inst. Elec. Eng. 1983. P 11/1-11/22.
  12. Yakabe T., Xiao F., Iwamoto K., Ghannouchi F. M., Fujii K., Yabe H. Six-Port Based Wave-Correlator with Application to Beam Direction Finding. IEEE Trans. Instrum. Meas. 2001. V. 50. № 2. P. 377-380.
  13. Caldecott R. The Generalized Multiprobe Reflectometer and Its Application to Automated Transmission Line Measurements. IEEE Trans. on Anten. Prop. 1973. V. AP-21. Is. 4. P. 550-554.
  14. Bondarenko I.K., Gimpilevich Ju.B., Carik Ju.I. Avtomaticheskij analizator cepej mnogojelementnogo tipa i metody ego kalibrovki. Izmeritel'naja tehnika. 1985. № 10. S. 33-34 (in Russian).
  15. L'vov A.A., Semjonov K.V. Metod kalibrovki avtomaticheskoj mnogozondovoj izmeritel'noj linii. Izmeritel'naja tehnika. 1999. № 4. S. 34-39 (in Russian).
  16. Kudrjashov Ju.Ju., L'vov A.A., Morzhakov A.A., Shirshin S.I. Kalibrovka datchikov analizatora stojachej volny na osnove mnogo zondovoj izmeritel'noj linii po proizvol'nym nagruzkam. Jelektronnaja tehnika. Ser. 1. Jelektronika SVCh. 1988. Vyp. 4(408). S. 55-57 (in Russian).
  17. L'vov A.A., Morzhakov A.A., Shirshin S.I., Zhukov A.V., Kudrjashov Ju.Ju. Izmerenie parametrov SVCh dvuhpoljusnikov putem mnogozondovoj izmeritel'noj linii. Jelektronnaja tehnika. Ser. 1. Jelektronika SVCh. 1987. Vyp. 7(401). S. 48-51 (in Russian).
  18. A.s. № 985751. Cifrovoj analizator stojachej volny. Ostrecov V.S., Sinicyn Ju.P., Cikalov Ju.N. Kl. G01R 27/06. Opub. v BI № 48. 1982.
  19. A.s. № 1318935. Izmeritel' kompleksnogo kojefficienta otrazhenija. Afonin I.L., Bondarenko I.K., Gimpilevich Ju.B. i dr. Kl. G01R 27/06. Opub. v BI № 23. 1987 (in Russian).
  20. Katz B.M., L’vov A.A., Meschanov V.P., Shatalov E.M., Shilova L.V. Synthesis of a Wideband Multiprobe Reflectometer. IEEE Transactions on Microwave Theory and Techniques, 2008. V. 56. № 2. P. 507-514.
  21. L'vov A.A., Meshhanov V.P., Svetlov M.S., Nikolaenko A.Ju. Optimal'noe ocenivanie parametrov SVCh-cepej s pomoshh'ju avtomaticheskih analizatorov cepej. Algoritmy obrabotki nabljudaemyh dannyh. Radiotehnika. 2018. T. 82. № 8. S. 147-154. DOI: 10.18127/j00338486-20-201808-28 (in Russian).
  22. Repin V.G., Tartakovskij G.P. Statisticheskij sintez v uslovijah apriornoj neopredelennosti i adaptacija informacionnyh sistem. M.: Sovetskoe radio. 1977. 432 s. (in Russian).
  23. Linnik Ju.V. Metod naimen'shih kvadratov i osnovy teorii obrabotki nabljudenij. M.: GIFML. 1958. 334 s. (in Russian).
  24. L'vov A.A., Galkina S.A., Anufriev A.N. Design of wideband automatic network analyzers based on the multi-port reflectometer. Proc. of the 2016 Int. Conf. on Actual Problems of Electron Devices Engineering. Saratov. Russia: IEEE. 2016. P. 416-423. DOI: 10.1109/APEDE.2016.7879038.
  25. Rozenberg V.Ja. Vvedenie v teoriju tochnosti izmeritel'nyh sistem. M.: Sovetskoe radio. 1975. 304 s.
  26. L'vov A.A., Meshhanov V.P., Svetlov M.S., Semezhev N. Optimal'noe ocenivanie parametrov SVCh-cepej s pomoshh'ju avtomaticheskih mnogopoljusnyh analizatorov. Vybor optimal'nogo sostava izmerenij. Radiotehnika. 2019. № 7(10). S. 101-111. DOI: 10.18127/j00338486-201907(10)-16 (in Russian).
  27. Matematicheskaja teorija planirovanija jeksperimenta. Pod red. S.M. Ermakova. M.: Nauka. 1983. 392 s. (in Russian).
  28. Voevodin V.V., Kuznecov Ju.A. Matricy i vychislenija. M.: Nauka. GIFML. 1984. 320 s. (in Russian).
  29. Buduris Zh., Shenev'e P. Cepi SVCh. M.: Sovetskoe radio. 1979. 288 s. (in Russian).
  30. L'vov A.A., Geranin R.V., Semezhev N., Solopekina A.A., L'vov P.A. A novel parameter estimation technique for software defined radio system based on broadband multi-port receiver. Proc. of the 2015 Int. Siberian Conf. on Control and Communications. Omsk, Russia, 2015. P. 1-5. DOI: 10.1109/SIBCON.2015.7147132.
  31. Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki. M.: Radio i svjaz'. 1986. 448 s. (in Russian).
  32. Jel'jasberg P.E. Opredelenie dvizhenija po rezul'tatam izmerenij. M.: Nauka. 1976. 416 s. (in Russian).
  33. Viterbi Je.O. Principy kogerentnoj svjazi. M.: Sovetskoe radio. 1970. 340 s. (in Russian).
  34. GOST 13266-74 Izmeriteli polnyh soprotivlenij koaksial'nyh i volnovodnyh traktov. Tehnicheskie trebovanija. Metody ispytanij. M. 1975 (in Russian).
Date of receipt: 30.07.2024
Approved after review: 27.08.2024
Accepted for publication: 29.10.2024