V.E. Martirosov1, G.A. Alekseev2
1 Moscow Aviation Institute (National Research University) (Moscow, Russia)
2 Koleman Tech (Moscow, Russia)
1 marti_ve@mail.ru; 2 alexeevg@yandex.ru
Frequency synthesizers of the indirect synthesis method (based on phase-locked frequency tuning systems, PLL) are widely used in the construction of transceivers of radio communication systems and digital information transmission systems, including as part of software-defined radio platforms and systems on a chip. This is due to a set of required parameters: tuning in the octave/super octave frequency range, high frequency resolution and "purity" of the spectrum of the generated signal, low power consumption and the possibility of microcircuit implementation in the microwave frequency range. At the same time, one of the significant disadvantages is the relatively low frequency tunning speed of such devices, in comparison with direct synthesis methods, due to the characteristics of the PLL system structure used in them with charge pumping (Charge-pump phase lock loop, CPPLL). As a result, it is relevant to search for methods to increase the performance of frequency synthesizers based on PLL systems. One of such solutions is the structure of a frequency synthesizer proposed by the authors based on a globally linearized synchronization system (GLSS), which also belongs to the class of PLL systems. In this paper carry out a comparative analysis of the dynamic characteristics of microwave frequency synthesizers made on the basis of a charge-pumped PLL system – CPPLL and on the basis of the proposed high-speed structure – GLSS, under conditions of different values of loop parameters and the magnitude of the frequency adjustment step. Using simulation modeling methods, the results of the operation of models of two structures for discrete frequency steps of various sizes in the entire operating frequency range are presented. The problem of changing the dynamics of structures due to shifts in the values of loop parameters is considered. The obtained dependences of the synchronization time on the relative initial frequency disorder demonstrate a gain in the speed of the GLSS compared to the CPPLL, reaching an order of magnitude or more. The results of the work can be used in the design of modern high-speed microwave frequency synthesizer chips of the indirect synthesis method.
Martirosov V.E., Alekseev G.A. Dynamic characteristics of the high-speed frequency synthesizer architecture of the indirect synthesis method. Radiotekhnika. 2024. V. 88. № 11. P. 105−116. DOI: https://doi.org/10.18127/j00338486-202411-14 (In Russian)
- Martirosov V.E. Optimal'nyj priem diskretnyh signalov CSPI. M.: Radiotehnika. 2010. 208 s. (in Russian).
- Gardner F.M. Charge-Pump Phase-Lock Loops. IEEE Transactions on Communications. November 1980. V. COM-28. № 11. Р. 1847-1858.
- ADF4196. Low Phase Noise, Fast Settling, 6GHz PLL Frequency Synthesizer. Data Sheet. URL: https://www.analog.com/ru/pro-ducts/adf4196.html#.
- LMX2572. 6.4-GHz Low power wideband RF synthesizer with phase synchronization and JESD204B support. Texas Instruments. URL: https://www.ti.com/lit/ds/symlink/lmx2572.pdf.
- XAPP888 (v1.8) August 20, 2019. MMCM and PLL Dynamic Reconfiguration. URL: https://www.xilinx.com/support/documen-tation/application_notes/xapp888_7Series_DynamicRecon.pdf.
- Intel® Agilex™ Clocking and PLL User Guide. URL: https://www.intel.ru/content/dam/www/programmable/us/en/pdfs/litera-ture/hb/agilex/ug-ag-clkpll.pdf.
- Patent na izobretenie № 2554535 (RF). Global'no linearizovannaja sistema sinhronizacii. Martirosov V.E., Alekseev G.A. Opubl. ofic. bjul. «Izobretenija. Poleznye modeli». 2015. № 18. (in Russian).
- Patent na izobretenie № 2595629 (RF) Sintezator chastot. Martirosov V.E., Alekseev G.A. Opubl. ofic. bjul. «Izobretenija. Poleznye modeli». 2016. № 24. (in Russian).
- Gardner F.M. Phaselock Techniques. 3rd ed., New York: John Wiley & Sons. 2005. 443 p.
- Levin V.A., Malinovskij V.N., Romanov S.K. Sintezatory chastot s sistemoj impul'sno-fazovoj avtopodstrojki. M.: Radio i svjaz'. 1989. 232 s. (in Russian).
- Tihomirov N.M., Romanov S.K., Len'shin A.V. Sistemy impul'sno-fazovoj avtopodstrojki v ustrojstvah sinteza i stabilizacii chastot. M.: Radio i svjaz'. 2010. 328 s. (in Russian).
- Shahtarin B.I., Prohladin G.N., Ivanov A.A., Bykov A.A., Chechulina A.A., Grechishhev D.Ju. Sintezatory chastot: Ucheb. posobie. M.: Gorjachaja linija – Telekom. 2007. 128 s. (in Russian).
- Best R.E. Phase Locked Loops: Design, Simulation, and Applications. 5rd ed. New York: McGraw-Hill. 2003. 421 p.
- Egan W.F. Frequency Synthesis Phase Lock. 2nd ed. New York: John Wiley & Sons. 1999. 583 p.
- Martirosov V.E., Alekseev G.A. Metody vysokoskorostnoj sinhronizacii v sistemah fazovoj avtopodstrojki chastoty. Radiotehnika. 2023. T. 87. № 3. S. 83-91. DOI: 10.18127/j00338486-202303-08 (in Russian).
- Martirosov V.E., Alekseev G.A., Paramonov A.A., Savvateev Ju.I. Strukturnyj sintez sistemy sinhronizacii s vysokimi dinamicheskimi harakteristikami. Radiotehnika i jelektronika. 2019. T. 64. № 2. S. 1-5. DOI: 10.1134/S0033849419020153 (in Russian).
- HMC833LP6GE v03.714. Data sheet. FRACTIONAL-N PLL WITH INTEGRATED VCO. URL:https://www.ana-log.com/media/en/technical-documentation/data-sheets/hmc833.pdf.
- Martirosov V.E, Alekseev G.A. Dinamicheskie harakteristiki sovremennyh vysokoskorostnyh sistem sinhronizacii. Sb. dokladov «Nanoindustrija». M.: AO «RIC «TEHNOSFERA» 2020. S. 277-285. DOI: 10.22184/1993-8578.2020.13.3s.277.285 (in Russian).