350 rub
Journal Radioengineering №11 for 2024 г.
Article in number:
New spectrally efficient spread spectrum signals based on atomic functions
Type of article: scientific article
DOI: 10.18127/j00338486-202411-12
UDC: 621.396
Authors:

E.V. Kuzmin1

1 Siberian Federal University (Krasnoyarsk, Russia)

1 ekuzmin@sfu-kras.ru

Abstract:

Formulation of the problem. Spectrally efficient signals have become the basis of various radio interfaces in recent decades. Having several advantages in the occupied frequency band compared to phase shift keyed (PSK) signals, they are successfully used in mobile communication systems (GSM), and also find application in space communication and navigation systems. Recent studies in the field of "design" of spread spectrum signals (SSS) with PSK have shown the promise of using atomic functions (AF) to modernize the shape of the chip of video signal pseudo-random sequences (PRS), thus, the logical continuation is the approbation of atomic shapes of chips in the synthesis of continuous phase (CP) frequency shift keying (FSK) SSS, potentially providing bandwidth savings, which is a relevant scientific and applied task with a wide range of practical utility.

Target. Present new spectral efficient formats of CPFSK signals generated by pseudo-random up- and fup-video signals based on chips from AF up() and fup() instead of rect-chips, as well as based on modification of the PRS filtering function, evaluate the spectral and correlation properties and advantages of new CPFSK-up(fup)-SSS; provide a comparative analysis of new CPFSK-SSS with widely used spectral efficient minimum shift keying (MSK) signals and their Gaussian variations (GMSK).

Results. On the basis of pseudo-random up(fup) video signals generated by AF up() and fup(), respectively, new spectrally efficient CPFSK-SSS formats are designed. Spectral and correlation illustrations of new signals are presented, estimates of their spectral efficiency are given and it is shown that they have better or parity indicators in terms of energy concentration in a fixed frequency band compared to MSK and GMSK.

Practical significance. The new proposed spectrally efficient formats of CPFSK-SSS have the most important property in the form of the requirement of a smaller band of occupied frequencies at a single clock frequency of the generating video signal PRS, which makes it possible to put them into practice in information-measuring and communication radio electronic systems, in which high compactness of the spectrum and low level of side lobes are important.

Pages: 88-95
For citation

Kuzmin E.V. New spectrally efficient spread spectrum signals based on atomic functions. Radiotekhnika. 2024. V. 88. № 11.
P. 88−95. DOI: https://doi.org/10.18127/j00338486-202411-12 (In Russian)

References
  1. Korn I. The effect of bandlimiting filters on probability of error of MSK. IEEE Transactions on communications. 1979. V. Com-27. № 9. P. 1348–1353.
  2. Murota K., Hirade K. GMSK modulation for digital mobile radio telephony. IEEE Transactions on communications. 1981. V. Com-29. № 7. P. 1044–1050.
  3. Nard G. Spread spectrum concept applied in new accurate medium-long range radiopositioning system. International hydrographie review. Monaco. 1985. V. LXII(1). P. 53–72.
  4. Krohin V.V. Informacionno-upravljajushhie kosmicheskie radiolinii. V 2-h chastjah. M.: NIIJeIR. 1993. Ch. 1. 229 s. (in Russian).
  5. Marugin A.S., Orlov V.K., Haziahmetova R.R. Poisk shirokopolosnogo signala radionavigacionnoj sistemy. Izvestija vuzov Rossii. Radiojelektronika. 2018. № 6. S. 66–74. DOI: 10.32603/1993-8985-2018-21-5-66-74 (in Russian).
  6. Dinges S.I., Pestrjakov A.V. Programmnyj kompleks formirovanija i analiza signalov sovremennyh i perspektivnyh telekommunikacionnyh sistem. T-Comm: Telekommunikacii i transport. 2015. T. 9. № 3. S. 62–65 (in Russian).
  7. Xie X., Zhang M. Implementation of the CPFSK signal non-coherent multi-symbol detection algorithm with reduced complexity. 5th International conference on natural language processing (ICNLP). 2023. P. 131–135. DOI: 10.1109/ICNLP58431.2023.00030.
  8. Sun Y. Optimal parameter design of continuous phase modulation for future GNSS signals. IEEE Access. 2021. V. 9. P. 58487–58502. DOI: 10.1109/ACCESS.2021.3073317.
  9. Cao S., Li T. Research on receiving and demodulating technology of GMSK signal under complex channel conditions. 6th International conference on information communication and signal processing. 2023. P. 837–842. DOI: 10.1109/ICICSP59554.2023.10390645.
  10. Kulikov G.V., Tambovskij S.S., Savvateev Ju.I., Starikovskij A.I. O pomehoustojchivosti prijoma signalov s minimal'-noj chastotnoj manipuljaciej v prisutstvii nefluktuacionnyh pomeh. Radiotehnika i jelektronika. 2019. T. 64. № 2. S. 168–174. DOI: 10.1134/S0033849419020141 (in Russian).
  11. Ipatov V.P., Hachaturjan A.B. Jeffektivnost' spektral'no-kompaktnyh signalov s uchjotom prednamerennyh i mezhsistemnyh pomeh. Izvestija vuzov Rossii. Radiojelektronika. 2015. № 4. S. 6–11 (in Russian).
  12. Rvachev V.L., Rvachev V.A. Teorija priblizhenij i atomarnye funkcii. M.: Znanie. 1978. 64 s. (in Russian).
  13. Kravchenko V.F. Lekcii po teorii atomarnyh funkcij i nekotorym ih prilozhenijam. Monografija. M.: Radiotehnika. 2003. 512 s. (in Russian).
  14. Kravchenko V.F., Pustovojt V.I. Novyj klass vesovyh funkcij i ih spektral'nye svojstva. Doklady akademii nauk. 2002. T. 386. № 1.
    S. 38–42 (in Russian).
  15. Dvorkovich V.P., Dvorkovich A.V. Okonnye funkcii dlja garmonicheskogo analiza signalov. M.: Tehnosfera. 2016. 208 s. (in Russian).
  16. Budunova K.A., Kravchenko V.F. Matematicheskie metody sinteza chastotno-izbiratel'nyh fil'trov. Fizicheskie osnovy priborostroenija. 2022. T. 11. № 1(43). S. 2–21. DOI: 10.25210/jfop 2102-002021 (in Russian).
  17. Erofeenko V.T., Kravchenko V.F. Konstruirovanie vremennyh signalov jeksponencial'no zatuhajushhimi atomarnymi funkcijami. Fizicheskie osnovy priborostroenija. 2020. T. 9. № 4. S. 30–37. DOI: 10.25210/jfop-2004-030037 (in Russian).
  18. Kuz'min E.V. Issledovanie jeffektivnosti vesovyh funkcij Kravchenko i kombinacij na ih osnove v zadache rezhekcii uzkopolosnyh pomeh. Radiotehnika i jelektronika. 2024. T. 69. № 2. S. 146–156. DOI: 10.31857/S0033849424020058 (in Russian).
  19. Kravchenko V.F., Konovalov Ja.Ju. Novaja konstrukcija vejvletov na osnove svertki finitnyh funkcij s prjamougol'nym impul'som. Radiotehnika i jelektronika. 2022. T. 67. № 8. S.761–773. DOI: 10.31857/S0033849422080095 (in Russian).
  20. Nandini D., Yadav J., Rani A., Singh V., Kravchenko O.V., Rathee N. Improved patient-independent seizure detection using hybrid feature extraction approach with atomic function-based wavelets. Iranian journal of science and technology. Transactions of electrical engineering. 2023. V. 47. P. 1667–1688. DOI: 10.1007/s40998-023-00644-3.
  21. Kravchenko V.F., Kravchenko O.V. Konstruktivnye metody algebry logiki, atomarnyh funkcij, vejvletov, fraktalov v zadachah fiziki i tehniki. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 696 s. (in Russian).
  22. García-Rios E., Escamilla-Hernández E., Pérez-Meana H.M., Ramos-Velasco L.E., Pérez-Bautista M., Kravchenko O.V. Analysis of a multi-biometric face recognition system using wavelet up(x). Publicación semestral pädi. 2022. V. 10. № Especial 4. P. 190–195. DOI: https://doi.org/10.29057/icbi.v10iEspecial4.9284.
  23. Kravchenko V.F., Churikov D.V. Cifrovaja obrabotka signalov atomarnymi funkcijami i vejvletami. Pod red. V.F. Kravchenko. M.: Tehnosfera. 2018. 182 s. (in Russian).
  24. Kuz'min E.V. Novye shumopodobnye signaly na osnove atomarnoj funkcii up(t). Radiotehnika. 2024. T. 88. № 4. S. 102–111. DOI: https://doi.org/10.18127/j00338486-202404-10 (in Russian).
  25. Varakin L.E. Sistemy svjazi s shumopodobnymi signalami. M.: Radio i svjaz'. 1985. 384 s.
  26. Makarov S.B., Cikin I.A. Peredacha diskretnyh soobshhenij po radiokanalam s ogranichennoj polosoj propuskanija. M.: Radio i svjaz'. 1988. 304 s. (in Russian).
Date of receipt: 14.10.2024
Approved after review: 17.10.2024
Accepted for publication: 29.10.2024