350 rub
Journal Radioengineering №10 for 2024 г.
Article in number:
Experimental study of a turnstile aperiodic HF-band antenna with a terminal load in the form of a near ground four-arm spiral antenna
Type of article: scientific article
DOI: 10.18127/j00338486-202410-20
UDC: 321.396.67
Authors:

Yu.A. Kostychov1, S.V. Krivaltsevich2, K.A. Maynenger3, A.V. Buchelnikov4, A.V. Bokov5

1-4 Omsk Scientific Center SB RAS (Institute of Radiophysics and Physical Electronics) (Omsk, Russia)

5 Omsk State Technical University (Omsk, Russia)

1 fatnblan@mail.ru; 2 kriser2002@mail.ru; 3 nelyubova_ksenia@mail.ru; 4 tony-602@mail.ru; 5 omgtu_vuc_rs@mail.ru

Abstract:

It is known that the energy characteristics of four-arm spiral near ground antennas with internal power supply (at the geometric center) vary significantly depending on the order of excitation of their inputs. When excitation of the arms of such antennas in the cross-polarization mode, their efficiency of radiating electromagnetic waves decreases by an order of magnitude or more; the article proposes an excitation method that is free of this drawback. The aim of the article is an experimental study of the comparative effectiveness of a near ground four-arm spiral antenna of the HF-band and the antenna system it is part of, when changing its excitation type (from internal to external) and mode (main and cross-polarization). A detailed description of the design of the antenna system and the method of implementing the excitation of its emitters are proposed. The proposed design of a phase-shifting device based on a Butler matrix can be used for effective electromagnetic waves radiation or reception by an antenna system of both right and left circular polarization. The results of the analysis of methods for excitation of a near ground four-arm spiral antenna presented in the article can be used in the design or modernization of antenna systems of ionosondes or radio centers with increasing their efficiency.

Pages: 183-191
For citation

Kostychov Yu.A., Krivaltsevich S.V., Maynenger K.A., Buchelnikov A.V., Bokov A.V. Experimental study of a turnstile aperiodic
HF-band antenna with a terminal load in the form of a near ground four-arm spiral antenna. Radiotekhnika. 2024. V. 88. № 10.
P. 183−191. DOI: https://doi.org/10.18127/j00338486-202410-20 (In Russian)

References
  1. Radway M.J., Filipovic D.S. Four-armed spiral-helix antenna. IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 338-341.
  2. Hebib S., Fonseca N.J. G., Aubert H. Compact printed quadrifilar helical antenna with iso-flux-shaped pattern and high cross-polarization discrimination. IEEE Antennas and Wireless Propagation Letters. 2011. V. 10. P. 635-638.
  3. Vall A.P., Kostychov Ju.A., Popov E.S. Priemoperedajushhaja mobil'naja chetyrehzahodnaja spiral'naja antenna dekametrovogo diapazona dlin voln. Uspehi sovremennoj radiojelektroniki. 2013. № 10. S. 75-79 (in Russian).
  4. Kostychov Ju.A., Krival'cevich S.V., Majnenger K.A., Bokov A.V. Povyshenie jeffektivnosti aperiodicheskih antenn putem zameshhenija okonechnyh nagruzok prizemnymi antennymi jelementami i vvedenija v konstrukciju fazovyh korrektorov. Radiotehnika. 2022. T. 86. № 8. S. 113-121. DOI: https://doi.org/10.18127/j00338486-202208-12 (in Russian).
  5. Kostychov Ju.A., Krival'cevich S.V., Majnenger K.A., Buchel'nikov A.V., Bokov A.V. Issledovanie vlijanija sposoba vozbuzhdenija prizemnoj chetyrehzahodnoj steljushhejsja spiral'noj antenny DKMV-diapazona na ee harakteristiki. Radiotehnika. 2024. T. 88. № 1.
    S. 149−157. DOI: https://doi.org/10.18127/j00338486-202401-14 (in Russian).
  6. Sverhshirokopolosnye antenny. Pod red. L.S. Benensona. M.: Mir. 1964. 416 s. (in Russian)
  7. Karim Louertani, Régis Guinvarc’H, Nicolas Ribière-Tharaud, Marc Hélier. Multiarms Multiports Externally Fed Spiral Antenna. IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. Р. 236-239. DOI: 10.1109/LAWP.2012.2188372.
  8. Provoda montazhnye. s voloknistoj ili plenochnoj i polivinilhloridnoj izoljaciej. TU 16-505. 437-82 (in Russian).
  9. Rizvi S.A.P., Khan R.A.A. Klopfenstein tapered 2–18 GHz microstrip balun. Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST). Islamabad. Pakistan. 2012. Р. 359-362. DOI: 10.1109/IBCAST.2012.6177579.
  10. Wincza K., Gruszczynski S. A broadband 4x4 Butler matrix for modern-day antennas. 2005 European Microwave Conference.
    Paris. France. 2005. Р. 4-1334. DOI: 10.1109/EUMC.2005.1610181.
  11. Lavrov G.A., Knjazev A.S. Prizemnye i podzemnye antenny. M.: Sovetskoe radio. 1965. 472 s. (in Russian).
  12. Sevick J. A simplified analysis of the broadband transmission line transformer. High Frequency Electronics. 2004. V. 3. № 2. Р. 48-53.
  13. Avramenko A.A., Galjamichev Ju.P., Lannje A.A. Jelektricheskie linii zaderzhki i fazovrashhateli. M.: Svjaz'. 1973. 107 s (in Russian).
  14. Popov O.V., Sosunov B.V., Fitenko N.G., Hitrov Ju.A. Metody izmerenij harakteristik antenno-fidernyh ustrojstv. L.: VAS. 1990. 182 s. (in Russian).
  15. FGBUn Institut Zemnogo magnetizma, ionosfery i rasprostranenija radiovoln im. N.V. Pushkova RAN. [https://www.iz-miran.ru/ jelektronnyj resurs]. Data obrashhenija: 23.06.2024 (in Russian).
Date of receipt: 11.07.2024
Approved after review: 27.07.2024
Accepted for publication: 30.09.2024