350 rub
Journal Radioengineering №10 for 2024 г.
Article in number:
Multiphysics simulation of a high power coaxial-to-waveguide transition
Type of article: scientific article
DOI: 10.18127/j00338486-202410-19
UDC: 621.372.8
Authors:

V.P. Meschanov1, K.A. Sayapin2

1,2 JSC “NIKA-Microwave” (Saratov, Russia)

1 nika373@bk.ru; 2 sayapin.k.a.@mail.ru

Abstract:

Coaxial-to-waveguide transitions are widely used in high-power microwave paths. Coupling elements in the form of capacitive probes and current loops, traditionally used in coaxial-waveguide transitions, often lead to a decrease in their dielectric strength. This problem is especially acute in the case of rectangular waveguide with reduced-height, which are widely used due to their small mass and dimensions. This paper presents the results of the development and multiphysics simulation of a C-band coaxial-to-waveguide capacitive-type transition designed to operate at high power levels, including under conditions of low atmospheric pressure. A thermal analysis was carried out and the conditions for the occurrence of multipactor and corona breakdowns were investigated. The developed coaxial-to-waveguide transition can be used in radio-electronic equipment of terrestrial and space communication systems. The obtained results of development and research can be used in the design of transmission line matching devices for on-board radio-electronic systems.

Pages: 174-182
For citation

Meschanov V.P., Sayapin K.A. Multiphysics simulation of a high power coaxial-to-waveguide transition. Radiotekhnika. 2024. V. 88. № 10. P. 174−182. DOI: https://doi.org/10.18127/j00338486-202410-19 (In Russian)

References
  1. Bialkowski M.E. Analysis of a coaxial-to-waveguide adaptor including a discended probe and a tuning post. IEEE Transactions on Microwave Theory and Techniques. 1995. V. 43. № 2. P. 344−349. DOI: 10.1109/22.348094.
  2. Vorob'ev A.V., Kac B.M., Korchagin A.I., Kupcov A.Ju., Meshhanov V.P., Sajapin K.A. Odnoportovye izmerenija jelektricheskih parametrov koaksial'no-volnovodnyh perehodov. Radiotehnika. 2019. № 7. S. 137-143. DOI: 10.18127/j00338486-201907(10)-21 (in Russian).
  3. Durga M., Tomar S., Singh S., Suthar L. Millimeter wave in-line coaxial-to-rectangular waveguide transition. IEEE Applied Electromagnetics Conference. 2011. P. 200-220. DOI:10.1109/AEMC.2011.6256817.
  4. Ali Mehrdadian, Hojjat Fallahi, Mohsen Kaboli. Design and Implementation of 0.7 to 7 GHz Broadband Double-Ridged Horn Antenna. 7th International Symposium on Telecommunications (IST'2014). 2014. P. 250-255. DOI: 10.1109/ISTEL.2014.7000707.
  5. Ralph Levy, Louis W. Hendrick. Analysis and Synthesis of In-Line Coaxial to Waveguide Adapters. Microwave Symposium Digest. IEEE MTT-S International. 2002. P. 809-811. DOI:10.1109/MWSYM.2002.1011754.
  6. Cano J.L., Mediavilla A. Octave bandwidth in-line rectangular waveguide-to-coaxial transition using oversized mode conversion. Electronics Letters. 2017. V. 53. № 20. P. 1370−1371. DOI:10.1049/el.2017.2507.
  7. Vorob'ev A.V., Kac B.M., Meshhanov V.P., Sajapin K.A. Malogabaritnye soosnye koaksial'no-volnovodnye perehody. Radiotehnika. 2019. № 7. S. 117-122. DOI: 10.18127/j00338486-201907(10)-18 (in Russian).
  8. Doo-Yeong Yang. Design and Fabrication of an End-Launched Rectangular Waveguide Adapter Fed by a Coaxial Loop. J. lnf. Commun. Converg. 2012. Eng. 10(2). P. 103-107. DOI:10.6109/jicce.2012.10.2.103.
  9. Liao A., Wang O., Wang B., Wang Z. Broad-band Transition from a Coaxial-line to a Rectangular Waveguide with Reduced-height. Proceedings of 2008 International Conference on Microwave and Millimeter Wave Technology. 2008. V. 4.
  10. Vorob'ev A.V., Dovgan' A.A., Kac B.M., Meshhanov V.P., Popova N.F., Syromjatnikov A.V. Teoreticheskoe i jeksperimental'noe issledovanie koaksial'no-volnovodnyh perehodov dlja sistem nazemnoj i kosmicheskoj svjazi. Radiotehnika. 2018. № 8. S. 111-115. DOI: 10.18127/j00338486-201808-22 (in Russian).
  11. Komarov V.V., Korchagin A.I., Meshhanov V.P. Povyshenie jelektricheskoj prochnosti koaksial'no-volnovodnyh perehodov. Radiotehnika i jelektronika. 2021. T. 66. № 2. S. 141-144. DOI: 10.31857/S0033849421020066 (in Russian).
  12. Mejnke H., Gundlah F.V. Radiotehnicheskij spravochnik. T. 1. M.: Gos. jenergeticheskoe izd-vo. 1960. 416 s. (in Russian).
  13. Fel'dshtejn A.L., Javich L.R., Smirnov V.P. Spravochnik po jelementam volnovodnoj tehniki. M.: Sovetskoe radio. 1967. 652 s. (in Russian).
  14. Bokov S.I. i dr. Ustrojstva soglasovanija linij peredachi. Issledovanija dlja nazemnoj i sputnikovoj svjazi. Vnedrenie v proizvodstvo. Pod red. V.P. Meshhanova. M.: Radiotehnika. 2019. 374 s. (in Russian).
  15. Vaughan J.R.M. A new formula for secondary emission yield. IEEE Trans. Electron Devices. 1963. № 36.
  16. Subramanyam A.V.G., Reddy D.S., Hariharan V.K., Srinivasan V.V., Chakrabarty A. High Power Combline Filter for Deep Space Applications. International Journal of Microwave Science and Technology. 2014. P. 1-11.
Date of receipt: 09.07.2024
Approved after review: 26.07.2024
Accepted for publication: 16.09.2024