350 rub
Journal Radioengineering №1 for 2024 г.
Article in number:
A generalized indicator of the efficiency of the use of the spacecraft radar to solve the remote sensing of earth problems by synthesizing the aperture. Part 1. Methodological foundations
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202401-12
UDC: 621.396.96
Authors:

D.D. Gabrielyan1, V.I. Demchenko2, A.O. Kasyanov3, A.A. Kosogor4

1,2,4 FSUE “Rostov-on-Don Research Institute of Radio Communication” (Rostov-on-Don, Russia)

3 Southern Federal University (Rostov-on-Don, Russia)

1 d.gabrielijan2011@yandex.ru; 3 kasyanovao@sfedu.ru

Abstract:

The importance of the article is determined by the following factors:

the increasing use of spacecraft radars and, at the same time, the extension of the range of tasks to be solved for remote sensing of the Earth;

using a wide range of orbits for the output of remote sensing radars of the spacecraft;

a large number of parameters of the remote sensing radar of the spacecraft, which determines the purposive characteristics in accordance with the tasks to be solved;

conflicting requirements for parameter values when solving various remote sensing tasks.

Under these conditions, the substantiation of the parameters of the onboard radar of the spacecraft, as well as any complex technical system, is impossible without a generalized indicator that takes into account heterogeneous and often contradictory requirements for their values. The methodological basis for the formation of a generalized indicator of the effectiveness of the use of space radar is to take into account the main objective characteristics of the remote sensing spacecraft, including:

the area of the observed surface of the Earth per unit of time (productivity);

spatial resolution along and across the path line;

radiometric sensitivity,

radiometric resolution.

Using the specified objective characteristics and variable indicators of the degree to which each of them is built, a generalized indicator of the efficiency of the spacecraft is formed in the form of multipliers. The number of multipliers is equal to the number of objective characteristics. The first and second factors represent a weighted ratio (taking into account the corresponding exponents) of the first and second objective characteristics and determine the geometric component of the received volume of radar information. The third and fourth factors determine the possibility of radar discrimination of objects on the ground in terms of their reflectivity and represent a weighted ratio of radiometric sensitivity and radiometric resolution.

On the basis of the radar equation, taking into account the relationship of the parameters of the spacecraft radar with the objective characteristics, analytical relations are obtained linking the parameters of the space radar and a generalized indicator of the effectiveness of the use of the space-based radar for remote sensing of Earth. This makes it possible to determine the requirements for the main resources of the on-board radar complex, namely, the radiated power and dimensions of the antenna system of the on-board radar.

Pages: 130-140
For citation

Gabrielyan D.D., Demchenko V.I., Kasyanov A.O., Kosogor A.A. A generalized indicator of the efficiency of the use of the spacecraft radar to solve the remote sensing of earth problemsby synthesizing the aperture. Part 1. Methodological foundations. Radiotekhnika. 2024. V. 88. № 1. P. 130−140. DOI: https://doi.org/10.18127/j00338486-202401-12 (In Russian)

References
  1. Verba V.S., Neronskij L.B., Osipov I.G., Turuk V.Je. Radiolokacionnye sistemy zemleobzora kosmicheskogo bazirovanija. Pod red.
    V.S. Verby. M.: Radiotehnika. 2010. 680 s. (in Russian).
  2. Kuprjashkin I.F., Lihachev V.P. Kosmicheskaja radiolokacionnaja s’emka zemnoj poverhnosti v uslovijah pomeh: Monografija. Voronezh: Izdatel'sko-poligraficheskij centr «Nauchnaja kniga». 2014. 460 s. (in Russian).
  3. Antipov V.N., Gorjainov V.T., Kulin A.N. i dr. Radiolokacionnye stancii s cifrovym sintezirovaniem apertury. M.: Radio i svjaz'. 1988 (in Russian).
  4. Ajerokosmicheskij radiolokacionnyj monitoring Zemli. Pod red. A.I. Kanashhenkova. M. Radiotehnika. 2006. 240 s. (in Russian).
  5. Shovengerdt R.A. Distancionnoe zondirovanie. Modeli i metody obrabotki izobrazhenij. M.: Tehnosfera. 2013. 592 s. (in Russian).
  6. Kuprjashkin I.F., Lihachev V.P., Rjazancev L.B. Kratkij opyt sozdanija i pervye rezul'taty prakticheskoj s’emki poverhnosti malogabaritnoj RLS s sintezirovaniem apertury antenny s borta mul'tikoptera. Zhurnal radiojelektroniki [jelektronnyj zhurnal]. 2019. № 4. Rezhim dostupa: http. jre.cplire.ru/jre/apr19/12/text.pdf DOI 10/30898/1684-1719.20194.4.12 (in Russian).
  7. Burenin N.I. RLS s sintezirovannoj antennoj. M.: Sovetskoe radio. 1972. 160 s. (in Russian).
  8. Karpov O.A., Tolstov E.F. Vidy obzora zemnoj poverhnosti v RSA aviacionnogo i kosmicheskogo bazirovanija. M.: Radiotehnika, 2009. № 3. S. 46-51 (in Russian).
  9. Kondratenkov G.S., Frolov A.Ju. Radiovidenie. Radiolokacionnye sistemy distancionnogo zondirovanija Zemli. M.: Radiotehnika. 2005. 368 s. (in Russian).
  10. Kosmicheskaja s’emka Zemli. Kosmicheskie sistemy radiolokacionnoj s’emki zemnoj poverhnosti. Spravochno-analiticheskoe izdanie. Pod red. Ju. A. Sorokina. M.: Radiotehnika. 2008. 86 s. (in Russian).
  11. Neronskij L.B., Mihajlov V.F., Bragin I.V. Mikrovolnovaja apparatura distancionnogo zondirovanija poverhnosti Zemli i atmosfery: Radiolokatory s sintezirovan¬noj aperturoj antenny. SPb: S.-Peterb. gos. un-t ajerokosmich. Priborostroenija. 1999. 220 s. (in Russian).
  12. Zaharov V.D., Lepjohina T.A., Nikolaev V.I., Titov M.P., Tolstov E.F., Chetverik V.N. Problemy ocenki prostranstvennogo i radiometricheskogo razreshenija RSA. Izvestija vuzov. Ser. Jelektronika. 2012. № 6(98). S. 65-72 (in Russian).
  13. Fomin A.N., Tjapkin V.N., Dmitriev D.D. Teoreticheskie i fizicheskie osnovy radiolokacii i special'nogo monitoringa: Uchebnik. Pod obshh. red. I.N. Ishhuka. Krasnojarsk: Sib. feder. un-t. 2016. 292 s. (in Russian).
  14. Reutov A.P. Radiolokacionnye stancii bokovogo obzora. M.: Sovetskoe radio. 1970. 360 s. (in Russian).
  15. Kondratenkov G.S. Radiolokacionnye stancii obzora Zemli. M.: Radio i svjaz'. 1983. 272 s. (in Russian).
  16. Petrov A.S. Metodika ocenki parametrov nizkoorbital'nyh kosmicheskih radiolokatorov s sintezirovannoj aperturoj. Uspehi sovremennoj radiojelektroniki. 2021. T. 75. № 5. S. 46-59. DOI: https://doi.org/10.18127/j20700784-202105-04 (in Russian).
  17. Petrov A.S. Modelirovanie doplerovskih parametrov kosmicheskih radiolokatorov s sintezirovannoj aperturoj. Uspehi sovremennoj radiojelektroniki. 2020. T. 74. № 7. S. 18–31. DOI: 10.18127/j20700784-202007-02 (in Russian).
Date of receipt: 31.10.2023
Approved after review: 09.11.2023
Accepted for publication: 29.12.2023