350 rub
Journal Radioengineering №1 for 2024 г.
Article in number:
5G network model development in AnyLogic environment
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202401-11
UDC: 004.725.7
Authors:

E.V. Glushak1, D.S. Klyuev2

1,2 Povolzhskiy State University of Telecommunications and Informatics (Samara, Russia)

1 evglushak@yandex.ru; 2 klyuevd@yandex.ru

Abstract:

Problem statement. The development of mobile communication networks does not stop for a minute, new standards and various new technologies are emerging. The opportunities provided by mobile technologies have long gone beyond voice services. The sharp growth of Internet traffic in networks around the world is explained by the widespread use of devices connected to mobile networks. With the development of mobile networks, new and diverse requirements are being imposed on them. Technology development is aimed at increasing productivity and expanding opportunities. Therefore, it becomes necessary to study the influence of the characteristics of additional parameters (delays, station loads) on the quality of data packet processing in order to optimize the operation of 5G networks and ensure more efficient use of resources. Many scientists who conducted research on 5G networks using modeling did not take into account various variants of queue processing algorithms, did not consider how the values of data transmission delays and the number of lost packets would change with an increase or decrease in the number of base stations, models consisting of several base stations were not considered. Based on this, we will conclude that it is advisable to develop a 5G network model, with the help of which various studies can be carried out, which will take into account the above parameters.

The goal is to investigate the resource model of data transmission in 5G networks, to analyze the operation of the 5G network model in the AnyLogic environment.

Results. During the study of traffic maintenance in the 5G network, the optimal system parameters were determined, allowing the most efficient use of network resources. It turned out that the use of methods of dynamic resource allocation and automatic change of base station parameters reduces the load on the network and increases its performance. The developed model allows us to assess the reliability of the system and its ability to process user requests, because the probability of losing an application or non-fulfillment of an application is high, this can lead to user dissatisfaction and a decrease in the quality of service.

Practical significance. The developed model can be used in practice to study and evaluate the parameters of the 5G network, as well as to analyze various characteristics that affect the quality of the network in order to improve it. This can help telecom operators optimize their networks and ensure more efficient use of resources.

Pages: 121-129
For citation

Glushak E.V., Klyuev D.S. 5G network model development in AnyLogic environment. Radiotekhnika. 2024. V. 88. № 1. P. 121−129. DOI: https://doi.org/10.18127/j00338486-202401-11 (In Russian)

References
  1. Ossejran A. Tehnologii mobil'noj svjazi 5G: analiz i perspektivy. Pervaja milja. 2013. Vyp. 5. S. 16–21 (in Russian).
  2. Gajdamaka Ju.V., Sopin Je.S., Gudkova I.A., Andreev S.D., Shorgin S.Ja., Samujlov K.E. Modeli i metody analiza i rascheta pokazatelej jeffektivnosti besprovodnyh geterogennyh setej: monografija. M.: FIC IU RAN. 2018. 71 s. (in Russian).
  3. Nikishin K.I. Issledovanie i modelirovanie 5G seti i harakteristik peredachi v srede AnyLogic. Izvestija SPbGJeTU «LJeTI». 2023. T. 16. № 3. S. 15-24 (in Russian).
  4. Kisel'nikov A.E., Uss M.O., Shidlovskij D.Ju. Razrabotka sistem svjazi standarta 5G s primeneniem instrumentarija 5G TOOLBOX programmnogo paketa MATLAB. Centr inzhenernyh tehnologij i modelirovanija «Jeksponenta». 2023. 10 s. (in Russian).
  5. Xiaolong J., Geyong M. Modelling and analysis of priority queueing systems with multi-class self-similar network traffic: a novel and efficient queue-decomposition approach. IEEE Transactions on Communications, 2007. V. 57. P. 1444–1452.
  6. Антонова В.М., Бурцева А.А., Маликов А.Ю. Построение участка сети пятого поколения в программе имитационного моделирования AnyLogic. Technical Science «Colloquium-journal». 2021. № 5(92). С. 36–41.
  7. McKeown N., Anderson T., Balakrishnan H. Openflow: enabling innovation in campus networks. Comp. Communication Rev. 2008. V. 38. № 2. P. 69–74.
  8. Kobayashi M., Seetharaman S., Parulkar G., Appenzeller G., Little J., Van Reijendam J., McKeown M. Naturing of Open Flow and Software-Defined networking through deployments. Comp. Networks. 2014. V. 61. P. 151–175.
  9. Fokin G.A. Model' tehnologii setevogo pozicionirovanija metrovoj tochnosti 5G NR. Ch. 1. Konfiguracija signalov PRS. Trudy uchebnyh zavedenij svjazi. 2022. T. 8. № 2. S. 48‒63 (in Russian).
  10. Nikishin K.I. Modelirovanie besprovodnoj sensornoj seti s ispol'zovaniem OMNET++. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo un-ta. 2021. № 78. S. 46-54 (in Russian).
  11. Boev V.D. Ob adekvatnosti sistem imitacionnogo modelirovanija GPSS World i AnyLogic. Ch. 1. Prikladnaja informatika. 2010. № 6(30). S. 69-82 (in Russian).
  12. Boev V.D. Ob adekvatnosti sistem imitacionnogo modelirovanija GPSS World i AnyLogic. Ch. 2. Prikladnaja informatika. 2011. № 4(34). S. 50-62 (in Russian).
  13. Glushak E.V., Lysikov A.A. Problemy modelirovanija determinirovannoj bazovoj seti 5G. Tr. konf. «Aktual'nye problemy informatiki, radiotehniki i svjazi». Samara. 2023. S. 30–31 (in Russian).
  14. Glushak E.V., Lysikov A.A. Problemy modelirovanija determinirovannoj seti radiodostupa 5G. Tr. konf. «Aktual'nye problemy informatiki, radiotehniki i svjazi». Samara. 2023. S. 31-32 (in Russian).
  15. Sviridova I.V., Horoshajlov R.N., Ljalin D.V. Analiz metodov MIMO dlja 5G i posledujushhih tehnologij: preimushhestva i nedostatki. Radiotehnika. 2023. T. 87. № 8. S. 100-104. DOI: https://doi.org/10.18127/j00338486-202308-16 (in Russian)
Date of receipt: 14.12.2023
Approved after review: 21.12.2023
Accepted for publication: 29.12.2023