350 rub
Journal Radioengineering №1 for 2024 г.
Article in number:
Traffic model in heterogeneous networks based on experimental data
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202401-09
UDC: 621.396.49
Authors:

E.A. Spirina1, S.V. Kozlov2, A.A. Bukharina3

1–3 Kazan National Research Technical University named after A.N. Tupolev–KAI (Kazan, Russia)

1 EASpirina@kai.ru; 2 SVkozlov@kai.ru; 3 AABukharina@kai.ru (Kazan, Russia)

Abstract:

Almost all modern networks provide data transfer between different subscriber devices types using subnets operating in different standards. Therefore, they are heterogeneous. To obtain correct estimates of the load and throughput of heterogeneous networks, it is necessary to be able to simulate such networks traffic close to real. Therefore, the traffic model development in heterogeneous networks based on experimental data is relevant. To do this, the article conducted an experimental study of real traffic in the operator “New Technologies of the XXI Century” heterogeneous network, analyzed the traffic generation main models in wireless networks, mathematical models IPP, 4IPP, IDP and 2IRP were selected for generating traffic in heterogeneous networks and determined the necessary for them application settings. Subscribers are classified depending on the subscriber devices types, the traffic types they use, and the data transferred volume. Based on the experimental data obtained, subscribers are classified depending on the subscriber devices types, the traffic types they use, as well as the data volume they transmit. A list of the subscribers’ main classes has been generated, indicating the models used to generate their traffic, and their parameters have been determined. A traffic mathematical model in heterogeneous networks has been developed, the transmission simulation of real and generated according to the developed model traffic over a heterogeneous network has been carried out, on the basis of which the correctness of the developed model has been shown. The resulting model allows us to obtain correct estimates of heterogeneous networks main characteristics using the mathematical modeling method.

Pages: 92-110
For citation

Spirina E.A., Kozlov S.V., Bukharina A.A. Traffic model in heterogeneous networks based on experimental data. Radiotekhnika. 2024. V. 88. № 1. P. 92−110. DOI: https://doi.org/10.18127/j00338486-202401-09 (In Russian)

References
  1. Mezhuev A. M., Korennoj A. V., Sturov D. L., Rodionov D. V. Ocenka jeffektivnosti informacionnogo obmena v cifrovyh setjah svjazi nazemno-vozdushnogo bazirovanija: algoritmicheskoe i programmnoe obespechenie. Radiotehnika. 2023. T. 87. № 9. S. 138-148. DOI: https://doi.org/10.18127/j00338486-202309-12 (in Russian).
  2. Hasanov M.H., Mammadov F.H., Taghiyev A.D., Gurbanova G.H. Assessment of quality of service characteristics of similar traffic in gsm standard mobile telecommunication networks. T-Comm. 2023. V. 17. № 6. P. 48-53.
  3. Makarov I.V. Ocenka propusknoj sposobnosti sistemy svjazi bespilotnogo letatel'nogo apparata dlja reshenija zadach upravlenija. Radiotehnika. 2013. T. 77. № 4. S. 40-45 (in Russian).
  4. Buzhin I.G., Antonova V.M., Gaifutdinov E.A., Mironov Yu.B. Methodology for a comprehensive assessment of the telecommunication services qualityof transport networks using SDN/NFV technologies. T-Comm. 2022. V. 16. № 12. P. 40-45.
  5. Kozlov S., Spirina E., Ashaev I., Bukharina A., Gaysin A. Novel Modification of the Collective Dynamic Routing Method for Sensors’ Communication in Wi-Fi Public Networks. Sensors. 2022. № 22. Р. 8602. https://doi.org/10.3390/s22228602.
  6. Spirina E.A., Kozlov S.V. Metod marshrutizacii, obespechivajushhij povyshenie propusknoj sposobnosti IP setej v uslovijah vnutrisistemnyh pomeh. Zhurnal radiojelektroniki. 2015. № 12. URL: http://jre.cplire.ru/jre/dec15/3/text.pdf (in Russian).
  7. Alferov A. G., Vlasov Ju.B., Tolstyh I.O., Tolstyh N.N., Cheljadinov Ju.V. Formalizovannoe predstavlenie jevoljucionirujushhego informacionnogo konflikta v telekommunikacionnoj sisteme. Radiotehnika. 2012. № 8. S. 27-33 (in Russian).
  8. Lerner I.M., Hajrullin A.N. Teorija razreshajushhego vremeni v oblasti sistem shirokopolosnogo dostupa. Algoritm ocenki dzhittera, obuslovlennogo peredachej dannyh, i propusknoj sposobnosti s polinomial'nym vremenem ispolnenija. T-Comm: Telekommunikacii i transport. 2023. T. 17. № 5. S. 48-57 (in Russian).
  9. Lerner I.M., Fajzullin R.R., Hajrullin A.N., Shushpanov D.V., Il'in V.I., Rjabov I.V. Povyshenie udel'noj propusknoj sposobnosti kak fundamental'naja problema teorii svjazi. Strategija razvitija v postshennonovskuju jepohu. Ch. 1. Retrospektivnyj obzor metodov priema i obrabotki signalov v chastotno-selektivnyh kanalah svjazi pri skorostjah peredachi informacii vyshe skorosti Najkvista. Uspehi sovremennoj radiojelektroniki. 2023. T. 77. № 1. S. 37-50. DOI: https://doi.org/10.18127/j20700784-202301-02 (in Russian).
  10. Lerner I.M., Fajzullin R.R., Hajrullin A.N., Shushpanov D.V., Il'in V.I., Rjabov I.V. Povyshenie udel'noj propusknoj sposobnosti kak fundamental'naja problema teorii svjazi. Strategija razvitija v postshennonovskuju jepohu. Ch. 2. Retrospektivnyj obzor metodov priema i obrabotki signalov v chastotno-selektivnyh kanalah svjazi pri nalichii mezhsimvol'nyh iskazhenij. Uspehi sovremennoj radiojelektroniki. 2023. T. 77. № 2. S. 16–33. DOI: https://doi.org/10.18127/j20700784-202302-02 (in Russian).
  11. Lerner I.M., Fajzullin R.R., Shushpanov D.V., Il'in V.I., Rjabov I.V., Hajrullin A.N. Povyshenie udel'noj propusknoj sposobnosti kak fundamental'naja problema teorii svjazi. Strategija razvitija v postshennonovskuju jepohu. Ch. 3. Retrospektivnyj obzor metodov ocenki propusknoj sposobnosti chastotno-selektivnyh kanalov svjazi pri nalichii pri nalichii mezhsimvol'nyh iskazhenij i ispol'zovanii FMn-n i AFMn-N-signala. Uspehi sovremennoj radiojelektroniki. 2023. T. 77. № 3. S. 24–33. DOI: https://doi.org/10.18127/j20700784-202303-02 (in Russian).
  12. Lerner I.M., Fajzulin R.R. Rjabov I.V. Optimizirovannyj algoritm ocenki propusknoj sposobnosti kanalov svjazi, funkcionirujushhih na baze teorii razreshajushhego vremeni. Radiotehnika. 2022. T. 86. № 4. S. 91-109. DOI: https://doi.org/10.18127/j00338486-202204-13 (in Russian).
  13. Lebedev I.S., Sikarev I.A., Suhoparov M.E., Rzaev B.T. Povyshenie kachestva analiza sostojanija bezopasnosti telekommunikacionnoj sistemy pri segmentacii setevogo trafika. T-Comm: Telekommunikacii i transport. 2022. T. 16. № 9. S. 28-32 (in Russian).
  14. Kanaev A.K., Lukichev M.M., Lukicheva V.L. Metodika formirovanija jekvivalentnogo mul'tiservisnogo uzla tehnologicheskoj seti svjazi v srede imitacionnogo modelirovanija, uchityvajushhaja vse parametry kachestva obsluzhivanija v ustanovivshemsja rezhime. T-Comm: Telekommunikacii i transport. 2019. T. 13. № 12. S. 13-23 (in Russian).
  15. Gamukin V.V. Modelirovanie kompleksnogo servisa dlja obespechenija raboty obrazovatel'noj organizacii: vzgljad jekspertov. Informatika i obrazovanie. 2023. T. 38. № 3. S. 42-53 (in Russian).
  16. Sheluhin O.I., Osin A.V. Vlijanie samopodobnosti trafika na optimizaciju parametrov telekommunikacionnyh setej. Jelektrotehnicheskie i informacionnye kompleksy i sistemy. 2007. № 1. URL: https://cyberleninka.ru/article/n/vliyanie-samopodobnosti-trafika-na-optimizatsiyu-parametrov-telekommunikatsionnyh-setey (дата обращения: 24.11.2023) (in Russian).
  17. Baugh C.R. 4IPP Traffic Model for IEEE 802.16.3, IEEE 802.16 URL: http://www.ieee802.org/16/tg3/contrib/802163c-00_51.pdf. (дата обращения: 24.11.2023).
  18. Trang Dinh Dang, Balázs Sonkoly, Sándor Molnár. Fractal Analysis and Modeling of VoIP Traffic. Proceedings of 11th International Telecommunications Network Strategy and Planning Symposium. 2004. Р. 217-222.
  19. Halgamuge S., Wang L. Computational Intelligence for Modelling and Prediction. Springer Science & Business Media. 2005. 414 p.
  20. Anisimov A.V., Andreev C.D., Tjurlikov A.M. Modelirovanie vhodnogo trafika v besprovodnoj seti svjazi. Sb. statej «Voprosy peredachi i zashhity informacii». SPb: SPbGUAP. 2011. S. 275-290 (in Russian).
  21. Murizah Kassim, Mahamod Ismail, Mat Ikram Yusof. Statistical Analysis and Modeling of Internet Traffic IP-based Network for Teletraffic Engineering. ARPN Journal of Engineering and Applied Sciences. 2015. V. 10. Is. 3. Р. 1505-1512.
  22. Popoola J., Ipinyomi R. A. Empirical Performance of Weibull Self-Similar Teletraffic Model. International Journal of Engineering and Aplied Sciences (IJEAS). 2017. V. 4. Is. 8. Р. 77-79.
  23. Jinhuan Zhang, Anfeng Liu, Peng Hu, Jun Long. A fuzzy-rule-based packet reproduction routing for sensor networks. International Journal of Distributed Sensor Networks. 2018. V. 14. Is. 4. Р. 1-18.
  24. Grebenshhikova A.A., Elagin V.S. Modelirovanie trafika dannyh dlja ocenki slajsinga v umnoj sisteme 5G na voshodjashhej linii svjazi. Informacionnye tehnologii i telekommunikacii. 2020. T. 8. № 2. S. 44–54 (in Russian).
  25. Kolesnikov A.V., Ivanov I.P., Basarab M.A. Nelinejno-dinamicheskie modeli setevogo trafika. Nelinejnyj mir. 2014. T. 12. № 4. S. 44-56 (in Russian).
  26. El Helou M., Lahoud S., Ibrahim M., Khawam K. A Hybrid Approach for Radio Access Technology Selection in Heterogeneous Wireless Networks. European Wireless 2013. 19th European Wireless Conference. Guildford, UK. 2013. Р. 1-6.
  27. Internet Traffic Archive. URL: http://ita.ee.lbl.gov.
  28. Xu W., et al., Exploiting Hotspot-2.0 for Traffic Offloading in Mobile Networks. IEEE Network. September/October 2018. V. 32. № 5.
    Р. 131-137. DOI: 10.1109/MNET.2017.1700058.
  29. 3GPP2 Contribution C.R1002-0, CDMA2000 Evaluation Methodology, December 2004. URL: https://web.archi-ve.org/web/20061014014956/http://www.3gpp2.org/Public_html/specs/C.R1002-0_v1.0_041221.pdf (дата обращения: 24.11.2023).
  30. Baugh C., Huang J. Traffic model for 802.16 TG3 MAC/PHY simulations. IEEE 802.16 Contribution 802.16.3c-01/30r1. March 2001. URL: https://web.archive.org/web/20100911214705/http://www.wirelessman.org/tg3/contrib/802163c-01_30r1.pdf (дата обращения: 24.11.2023).
  31. Shirokov V.L. Modeli ocenki proizvoditel'nosti mnogofunkcional'nyh sistem obmena trafikom na primere besprovodnyh setej dostupa Wi-Fi, Wireless MAN i WiMAX. Jelektronnyj zhurnal «Vychislitel'nye seti. Teorija i praktika». M.: BC/NW. № 2(5). 2004. Razdel 6, sta-t'ja 1. URL: https://network-journal.mpei.ac.ru/cgi-bin/main.pl?ar=1&l=ru&n=5&pa=6 (in Russian).
  32. Kozlov S.V., Spirina E.A. Svidetel'stvo o gosudarstvennoj registracii programm dlja JeVM №2018617214. Programmnyj kompleks OFDM Planning. Zajavka №2018612208; Zaregistrirovana v Reestre programm dlja JeVM 21.06.2018 (in Russian).
Date of receipt: 30.11.2023
Approved after review: 06.12.2023
Accepted for publication: 26.12.2023