350 rub
Journal Radioengineering №1 for 2024 г.
Article in number:
Features of the formation of nickel-containing nanoparticles on glassy carbon electrodes using electrodeposition from solutions of sodium pectate complexes
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202401-07
UDC: 539.25
Authors:

K.V. Kholin1, T.P. Sultanov2, P.Y. Enders3, E.A. Soloviev4, E.I. Galeeva E.I.5, S.T. Minzanova6

1 Kazan National Research Technical University named after A. N. Tupolev - KAI (Kazan, Russia)

1-6 Kazan National Research Technological University (Kazan, Russia)

1-4,6 A.E. Arbuzov Institute of Organic and Physical Chemistry (Kazan, Russia)

1 kholin06@mail.ru; 2 sultanovtp05@mail.ru; 3 enderspolina@mail.ru;  4 evgeniy.solovev.anatolevich@mail.ru; 5galeeva-el@mail.ru; 6 minzanova@iopc.ru

Abstract:

Problem statement. Currently, many leading companies in the field of electronics, radio engineering, and aerotechnics are concerned about the depletion of non-renewable resources such as platinum, gold, silver, indium and even the more common lithium, nickel and copper, which they actively use in their products. The design and synthesis of nanostructures with controlled morphology has attracted the attention of many researchers and engineers, since it is much more efficient to deposit a small amount of metal on the surface being used than to create a part entirely from this metal. There are several main methods for producing nanostructures on a surface: chemical deposition, electron beam lithography, pulsed laser deposition, electrochemical deposition and other methods. Electrochemical deposition is worth highlighting among all methods, because it makes it possible to obtain such surfaces relatively cheaply and on a large scale and control their morphology by changing deposition conditions, such as time, potential, solution pH, etc.

Purpose of the study. Obtain nickel-containing nanoparticles on glassy carbon by electrodeposition from an aqueous solution of biopolymer complexes of sodium pectate with divalent nickel; to determine the influence of electrodeposition conditions, namely, the duration of deposition and the content of Ni(II) ions in sodium petectate complexes, on the morphology of the resulting surface.

Results. Studies have been carried out of the influence of electrodeposition conditions on the morphology of the resulting glassy carbon electrode surface. It was found that biopolymer ligands act as a stabilizing agent for the formation of nickel-containing nanoparticles instead of a nickel-containing layer. The standard sizes of the resulting nanoparticles are in the range of 20 – 90 nm. The nickel content in the complexes, as well as the deposition time, proportionally affects the amount of deposited nanoparticles, but has little effect on their sizes.

Practical significance. The results obtained make it possible to use them for controlled electrodeposition of nickel-containing nanoparticles on conducting surfaces in the development of nonlinear optical devices, LEDs, diodes, transistors, logic gates, sensors and other electronic devices.

Pages: 77-85
For citation

Kholin K.V., Sultanov T.P., Enders P.Y., Soloviev E.A., Galeeva E.I., Minzanova S.T. Features of the formation of nickel-containing nanoparticles on glassy carbon electrodes using electrodeposition from solutions of sodium pectate complexes. Radiotekhnika. 2024.
V. 88. № 1. P. 77−85. DOI: https://doi.org/10.18127/j00338486-202401-07 (In Russian)

References
  1. Belikov A.V., Kozlova A.D., Fedorova Ju.V., Smirnov S.N. Issledovanie aktivnoj lazernoj dostavki i antimikoticheskoj aktivnosti cinksoderzhashhih nanomaterialov i fotodinamicheskih preparatov v lechenii onihomikoza. Radiotehnika. 2023. T. 87. № 8. S. 116-127. DOI: https://doi.org/10.18127/j00338486-202308-19 (in Russian).
  2. Daniel M.C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 2004. V. 104(1). P. 293-346. https://doi.org/10.1021/cr030698+.
  3. Smirnov S.E., Smirnov S.S., Pucylov I.A., Vorob'ev I.S. Metod sinteza nanostrukturirovannyh jelektrodov. Naukoemkie tehnologii. 2012. T. 13. № 6. S. 8-13 (in Russian).
  4. Sapkov I.V., Kolesov V.V., Soldatov E.S. Nanotehnologija dlja nanojelektroniki: formirovanie nanozazora v metallicheskom nanoprovode sfokusirovannym ionnym puchkom. Radiotehnika. 2011. T. 75. № 10. S. 28-35 (in Russian).
  5. Bayoumi F.M., Ateya B.G. Formation of self-organized titania nano-tubes by dealloying and anodic oxidation. Electrochemistry Communications. 2006. V. 8(1). P. 38-44. https://doi.org/10.1016/j.elecom.2005.10.014.
  6. Yinghua L., Xuelong P., Jiacai K., Yingjun D. Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition: A review. Reviews on Advanced Materials Science. 2020. V. 59(1). P. 340-351. https://doi.org/10.1515/rams-2020-0027.
  7. Ivanov M.S., Khomchenko V.A., Salimian M., Nikitin T., Kopyl S., Buryakov A.M., Mishina E.D., Salehli F., Marques P.A.A.P., Goncalves G., Fausto R., Paixão J.A., Kholkin A.L. Self-assembled diphenylalanine peptide microtubes covered by reduced graphene oxide/spiky nickel nanocomposite: An integrated nanobiomaterial for multifunctional applications. Materials & Design. 2018. V. 142. P. 149-157. https://doi.org/10.1016/j.matdes.2018.01.018.
  8. Krishnapriya R., Praneetha S., Murugan A.V. Microwave-solvothermal synthesis of various TiO2 nano-morphologies with enhanced efficiency by incorporating Ni nanoparticles in an electrolyte for dye-sensitized solar cells. Inorganic Chemistry Frontiers. 2017. V. 4(10). P. 1665-1678. https://doi.org/10.1039/C7QI00329C.
  9. Lee H.Y., Kim S.W., Lee H.Y. Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochemical and Solid-State Letters. 2001. V. 4(3). P. A19. https://doi.org/10.1149/1.1346536.
  10. Hong M.S., Lee S.H., Kim S.W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochemical and Solid-State Letters. 2002. V. 5(10). P. A227-230. https://doi.org/10.1149/1.1506463.
  11. Cote L.J., Teja A.S., Wilkinson A.P., Zhang Z.J. Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilibria. 2003. V. 210(2). P. 307-317. https://doi.org/10.1016/S0378-3812(03)00168-7.
  12. Fu X., Yu H., Peng F., Wang H., Qian Y. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Applied Catalysis A: General. 2007. V. 321(2). P. 190-197. https://doi.org/10.1016/j.apca-ta.2007.02.002.
  13. Spatz J.P., Mößmer S., Möller M. Mineralization of gold nanoparticles in a block copolymer microemulsion. Chemistry–A European Journal. 1996. V. 2(12). P. 1552-1555. https://doi.org/10.1002/chem.19960021213.
  14. Glass R., Möller M., Spatz J.P. Block copolymer micelle nanolithography. Nanotechnology. 2003. V. 14(10). P. 1153. https://doi.org/10.1088/0957-4484/14/10/314.
  15. Esparza R., Rosas G., Fuentes M.L., Ramírez J.S., Pal U., Ascencio J.A., Pérez R. Synthesis of gold nanoparticles with different atomistic structural characteristics. Materials Characterization. 2007. V. 58(8-9). P. 694-700. https://doi.org/10.1016/j.mat-char.2006.11.032.
  16. Lu D.L., Tanaka K. Gold particles deposited on electrodes in salt solutions under different potentials. The Journal of Physical Chemistry. 1996. V. 100(5). P. 1833-1837. https://doi.org/10.1021/jp952183v.
  17. Huang H., Yang X. One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. V. 255(1-3). P. 11-17. https://doi.org/10.1016/j.colsurfa.2004.12.020.
  18. Finot M.O., Braybrook G.D., McDermott M.T. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. Journal of Electroanalytical Chemistry. 1999. V. 466(2). P. 234-241. https://doi.org/10.1016/S0022-0728(99)00154-0.
  19. Srinivasan V., Weidner J.W. An electrochemical route for making porous nickel oxide electrochemical capacitors. Journal of the Electrochemical Society. 1997. V. 144(8). P. L210. https://doi.org/10.1149/1.1837859.
  20. Therese G.H.A., Kamath P.V. Electrochemical synthesis of metal oxides and hydroxides. Chemistry of materials. 2000. V. 12(5).
    P. 1195-1204. https://doi.org/10.1021/cm990447a.
  21. Kholin, K. V., Soloviev, E. A., Enders, P. Y., Sultanov, T. P., Mansurov, R. N., Minzanova, S. T. Electrocatalytic Hydrogen Evolution Reaction with a Manganese-Containing Nanocomposite. High Energy Chemistry. 2023. V. 57 (Suppl 1). P. S213-S217. https://doi.org/10.1134/S0018143923070214.
  22. Kholin, K. V., Enders, P. Y., Soloviev, E. A., Drobyshev, S. V., Mansurov, R. N., Minzanova, S. T. Glassy Carbon Surface Modification with Iron-Containing Nanoparticles. High Energy Chemistry. 2023. V. 57 (Suppl 1). P. S32-S36. https://doi.org/10.1134/S0018143923070202.
  23. Khazaei A., Rahmati S., Saednia S. An efficient ligand-and copper-free Sonogashira reaction catalyzed by palladium nanoparticles supported on pectin. Catalysis Communications. 2013. V. 37. P. 9-13. https://doi.org/10.1016/j.catcom.2013.03.013.
  24. Al-Muhanna M.K.A., Hileuskaya K.S., Kulikouskaya V.I., Kraskouski A.N., Agabekov V.E. Preparation of stable sols of silver nanoparticles in aqueous pectin solutions and properties of the sols. Colloid journal. 2015. V. 77. P. 677-684. https://doi.org/10.1134/S1061933X15060022.
  25. Tummalapalli M., Deopura B.L., Alam M.S., Gupta B. Facile and green synthesis of silver nanoparticles using oxidized pectin. Materials Science and Engineering: C. 2015. V. 50. P. 31-36. https://doi.org/10.1016/j.msec.2015.01.055.
  26. Kadirov M.K., Minzanova S.T., Nizameev I.R., Mironova L.G., Gilmutdinov I.F., Khrizanforov M.N., Kholin K.V., Khamatgalimov A.R., Semyonov V.A., Morozov V.I., Kadirov D.M., Mukhametzyanov A.R., Budnikova Y.H., Sinyashin O.G. Correction: A nickel-based pectin coordination polymer as an oxygen reduction reaction catalyst for proton-exchange membrane fuel cells. Inorganic Chemistry Frontiers. 2019. V. 6(1). P. 326. https://doi.org/10.1039/C8QI90050G.
  27. Holin K.V., Minzanova S.T., Shirobokov V.P., Kadirov M.K. Jelektrohimija kompleksov nikelja s pektatom natrija v hode vosstanovlenija na zolotom, platinovom i steklouglerodnom jelektrodah v prisutstvii SO2. Vestnik Tehnologicheskogo universiteta. 2019. T. 22. № 9.
    S. 5-9 (in Russian).
  28. Kholin K.V., Shirobokov V.P., Nizameev I.R., Minzanova S.T., Kadirov M.K. Catalytic properties of nanostructured nickel-containing pectin biopolymers on a glassy carbon surface. Journal of Physics: Conference Series. 2020. V. 1695(1). P. 012050. https://doi.org/10.1088/1742-6596/1695/1/012050.
  29. Kholin K.V., Nizameeva G.R., Minzanova S.T., Kadirov M.K. Data of characterization of sodium pectate complexes with iron and manganese. Data in Brief. 2021. V. 39. P. 107594. https://doi.org/10.1016/j.dib.2021.107594.
  30. Kholin K.V., Khrizanforov M.N., Babaev V.M., Nizameeva G.R., Minzanova S.T., Kadirov M.K., Budnikova Y.H. A Water-Soluble Sodium Pectate Complex with Copper as an Electrochemical Catalyst for Carbon Dioxide Reduction. Molecules. 2021. V. 26(18). P. 5524. https://doi.org/10.3390/molecules26185524.
Date of receipt: 30.11.2023
Approved after review: 06.12.2023
Accepted for publication: 26.12.2023