350 rub
Journal Radioengineering №1 for 2024 г.
Article in number:
On the issue of capacitively coupled circuits using to explain the mutual influence of wires
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202401-03
UDC: 621.37
Authors:

V.F. Dmitrikov1, D.V. Shushpanov2

1,2 Bonch-Bruevich Saint Petersburg State University of Telecommunications (Saint Petersburg, Russia)

1 Dmitrikov_VF@mail.ru, 2 dimasf@inbox.ru

Abstract:

The wire, as a separate element, is practically never sanctified in the literature. There is no radio-electronic device without a wire. It is the frequency characteristics of the wire impedance that limit the frequency characteristics of the inductor impedance, i.e. limit the frequency range of the radio interference filter. Therefore, it is important to understand the physics of the processes occurring in the wire. In addition, it is important to understand how the wire “parasitic” parameters affect the other elements “parasitic” parameters. An explanation for the presence of capacitance in a wire equivalent circuit through the skin effect phenomenon is proposed in this article. The using of the concept of capacitively coupled circuits as a dual analogue of inductively coupled circuits is proposed. It is shown that the duality of inductively coupled circuits and capacitively coupled circuits is possible only due to the duality of the alternating vortex magnetic field and the alternating vortex electric field. The viability of using the concept of capacitively coupled circuits is shown using the example of the measured impedance of two wires in various variants of parallel connection.

Pages: 15-30
For citation

Dmitrikov V.F., Shushpanov D.V. On the issue of capacitively coupled circuits using to explain the mutual influence of wires. Radiotekhnika. 2024. V. 88. № 1. P. 15−30. DOI: https://doi.org/10.18127/j00338486-202401-03 (In Russian)

References
  1. Cuellar C. HF Characterization and Modeling of Magnetic Materials for the Passive Components Used in EMI Filters. PhD Doctoral, Electrical Engineering. University of Lille. Lille, France. 2013. 2010 p. URL: https://pepite-depot.univ-lille.fr/LIB-RE/EDSPI/2013/50376-2013-Cuellar.pdf.
  2. Babun'ko S.A., Bazhilov V.A., Belov Ju.G. Avtomatizirovannoe proektirovanie SVCh-ustrojstv na chip-jelementah. Antenny. 2010. № 7(158). S. 67-72 (in Russian).
  3. Kanaev K.A., Popov O.V., Borisov G.N., Tumashov A.V. Matematicheskaja model' i jekvivalentnaja shema trehobmotochnogo transformatora. Uspehi sovremennoj radiojelektroniki. 2017. № 10. S. 70-75 (in Russian).
  4. Dmitrikov V.F., Isaev V.M., Kunevich A.V. Razrabotka povedencheskih modelej kondensatorov i drosselej s uchetom chastotnyh svojstv dijelektricheskoj i magnitnoj pronicaemosti dijelektrikov i magnetikov. Nanoindustrija. 2020. T. 13. № S4(99). S. 372–373. DOi: 10.22184/1993-8578.2020.13.4s.372.373 (in Russian).
  5. Dmitrikov V.F., Isaev V.M., Kunevich A.V., Shushpanov D.V., Petrochenko A.Ju. Vysokochastotnaja model' katushki induktivnosti. Nanoindustrija. 2021. T. 14. № S7(107). S. 415–417. DOI: 10.22184/1993-8578.2021.14.7S.415.417 (in Russian).
  6. Taylor L., Tan W., Margueron X., Idir N. Reducing of parasitic inductive couplings effects in EMI filters. 2013 15th European Conference on Power Electronics and Applications (EPE). Lille, France. 2013. Р. 1–8. DOI: 10.1109/EPE.2013.6634643.
  7. Cuellar C., Idir N. Reduction of the parasitic couplings in the EMI filters to improve the high frequency insertion loss. IECON 2018. 44th Annual Conference of the IEEE Industrial Electronics Society. 2018. Р. 5766–5771. DOI: 10.1109/IECON.2018.8591234.
  8. Wang S., Lee F.C., van Wyk J.D. Integration of parasitic cancellation techniques for EMI filter design. 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. Austin, TX, USA. 2008, Р. 736–742. DOI: 10.1109/APEC.2008.4522803.
  9. Wang S., Lee F.C., van Wyk J.D. Design of Inductor Winding Capacitance Cancellation for EMI Suppression. IEEE Transactions on Power Electronics. Nov. 2006. V. 21. № 6. Р. 1825–1832. DOI: 10.1109/TPEL.2006.882898.
  10. Wang S., Lee F.C., van Wyk J.D. Inductor winding capacitance cancellation using mutual capacitance concept for noise reduction application. IEEE Transactions on Electromagnetic Compatibility. May 2006. V. 48. № 2. Р. 311–318. DOI: 10.1109/TEMC.2006.873867.
  11. Yang Z.L. Mutual capacitance-duality principle evolved from planar network. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. Dec. 1992. V. 39. № 12. Р. 1005–1006. DOI: 10.1109/81.207722.
  12. Massarini A., Kazimierczuk M.K. Self-capacitance of inductors. IEEE Transactions on Power Electronics. July 1997. V. 12. № 4. Р. 671–676. DOI: 10.1109/63.602562.
  13. Cuellar C., Idir N., Benabou A. High Frequency Behavioral Ring Core Inductor Model. IEEE Transactions on Power Electronics. May 2016. V. 31. Is. 5. Р. 3763–3772. DOI: 10.1109/TPEL.2015.2460374.
  14. Dmitrikov V.F., Shushpanov D.V. Jekvivalentnaja shema zameshhenija drosselja, namotannogo na ferrite, v shirokom diapazone chastot (0 Gc – 500 MGc). Fizika volnovyh processov i radiotehnicheskie sistemy. 2021. T. 24. № 4. S. 25–45. DOI: 10.18469/1810-3189.2021.24.4.25-45 (in Russian).
  15. Salomez F., Videt A., Idir N. Modeling and Minimization of the Parasitic Capacitances of Single-Layer Toroidal Inductors. IEEE Transactions on Power Electronics. Oct. 2022. V. 37. № 10. Р. 12426–12436. DOI: 10.1109/TPEL.2022.3177642.
  16. Dmitrikov V.F., Shushpanov D.V., Fochenkov Je.A. Jekvivalentnaja shema zameshhenija drosselja na nanokristallicheskom serdechnike s bol'shoj magnitnoj pronicaemost'ju. Fizika volnovyh processov i radiotehnicheskie sistemy. 2022. T. 25. № 4. S. 100–121. DOI: 10.18469/1810-3189.2022.25.4.100-121 (in Russian).
  17. Matveev A.V. Jelektrichestvo i magnetizm. M.: Vysshaja shkola. 1983. 463 s. (in Russian).
  18. Dmitrikov V.F., Shushpanov D.V. Jekvivalentnaja shema zameshhenija dijelektrika v shirokom diapazone chastot (0 Gc – 500 MGc). Fizika volnovyh processov i radiotehnicheskie sistemy, 2022. T. 25. № 3. S. 43–57. DOI: 10.18469/1810-3189.2022.25.3.43-57 (in Russian).
  19. Beleckij A.F. Teorija linejnyh jelektricheskih cepej: Uchebnik. Izd. 2-e, ster. SPb: Lan'. 2009. 544 s. (in Russian).
  20. GOST 19880-74. Jelektrotehnika. Osnovnye ponjatija. Terminy i opredelenija (in Russian).
  21. Martens L.K. Tehnicheskaja jenciklopedija. T. 7. M.: AO «Sovetskaja jenciklopedija». 1929. 467 s. (in Russian).
  22. Vil'gel'm R., Uoters M. Zazemlenie nejtrali v vysokovol'tnyh sistemah: Per. s angl. Pod red. D.V. Razeviga. M.; L.: Gosjenergoizdat. 1959. 416 s. (in Russian).
  23. Apollonskij S.M. Problemy jelektromagnitnoj bezopasnosti na zheleznoj doroge, jelektrificirovannoj postojannym tokom. T.I. Jelektromagnitnaja bezopasnost' na zheleznoj doroge s postojannym tokom v tjagovoj seti. M.: Rusajns. 2017. 386 s. (in Russian).
  24. Tashlykova-Bushkevich I.I. Fizika: uchebnoe posobie. V 2-h chastjah. Ch. 1. Mehanika. Molekuljarnaja fizika i termodinamika. Jelektrichestvo i magnetizm. Minsk: BGUIR. 2006. 232 s. (in Russian).
  25. Iossel' Ju.A., Kochanov Je.S., Strunskij M.G. Raschet jelektricheskoj emkosti. L.: Jenergoizdat. Leningr. otd-e. 1981. 288 s. (in Russian).
  26. Kotny J.-L., Margueron X., Idir N. High-Frequency Model of the Coupled Inductors Used in EMI Filters. IEEE Transactions on Power Electronics. June 2012. V. 27. № 6. Р. 2805–2812. DOI: 10.1109/TPEL.2011.2175452.
Date of receipt: 30.11.2023
Approved after review: 06.12.2023
Accepted for publication: 26.12.2023