350 rub
Journal Radioengineering №9 for 2023 г.
Article in number:
On measurements of spurious components of heterodyne signal in radiometric receivers
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202309-14
UDC: 621.382
Authors:

A.V. Korolev1, A.G. Gudkov2, I.A. Sidorov3, V.Yu. Leushin4, S.V. Chizhikov5

1 Ltd “Hyperion” (Moscow, Russia)

2 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

With a heterodyne frequency conversion, a significant contribution to the intrinsic noise of the radiometric receiver is made by a heterodyne. The spectral components generated by the heterodyne will be present in the processed signal at the output of the radiometric receiver and may manifest themselves when analyzing the received signal in spectral lines when high frequency resolution is required for processing.

The purpose of the work is to analyze various types of modulation of the heterodyne signal, including modulation with an arbitrary phase shift between the components in the lower and upper side bands of the heterodyne signal.

In this article, the methods of frequency transfer used in determining the spectral composition of the signal received by a radiometric receiver are considered. For heterodyne frequency conversion, in addition to the classical types of parasitic modulation of the heterodyne signal described in the literature – amplitude, phase (frequency) and single-band modulation, modulation with an arbitrary phase shift between the components in the lower and upper side bands of the heterodyne signal is considered. It is shown that with a small deviation of the frequencies of the modulating signal, ambiguity is possible in determining the level of components when using signal analyzers to measure the characteristics of heterodynes of radiometric receivers.

The results of the analysis performed in the article can be used in the design of heterodynes with multiple output frequencies, taking into account the spectral comtent of the synthesized signal.

The study was carried out at the expense of the grant of the Russian Science Foundation No. 22-19-00063 dated 13.05.2022. https://rscf.ru/project/22-19-00063.

Pages: 168-174
For citation

Korolev A.V., Gudkov A.G., Sidorov I.A., Leushin V.Yu., Chizhikov S.V. On measurements of spurious components of heterodyne
signal in radiometric receivers. Radiotekhnika. 2023. V. 87. № 9. P. 168−174. DOI: https://doi.org/10.18127/j00338486-202309-14
(In Russian)

References
  1. Kol'cov N.E., Grenkov S.A., Fedotov L.V. Spektral'no-selektivnye radiometry s polosami propuskanija do 1 GGc. Pribory i tehnika jeksperimenta. 2013. № 5. S. 66-66 (in Russian).
  2. Parijskij Ju.N. i dr. Obzor okolozenitnoj oblasti neba na chastote 30 GGc s 32-jelementnoj matricej radiometrov RATAN-600. Astrofizicheskij bjulleten'. 2013. T. 68. № 2. S. 249-256 (in Russian).
  3. Kalinin A.V. i dr. Problemy apparaturnogo obespechenija izmerenij harakteristik bol'shih antenn po signalam vnezemnyh radioistochnikov. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2016. T. 3. № 4. S. 41-47 (in Russian).
  4. Treuttel J., et al. Compact sub millimeter wavelength heterodyne radiometer for arrays. 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE. 2011. P. 1-4.
  5. Gudkov A.G. i dr. Dvuhpoljarizacionnyj mikrovolnovyj radiometr L-diapazona. SVCh-tehnika i telekommunikacionnye tehnologii. 2020. № 1-1. S. 521-522 (in Russian).
  6. Neronskij L.B., Mihajlov V.F., Bragin I.V. Mikrovolnovaja apparatura distancionnogo zondirovanija poverhnosti Zemli i atmosfery. Radiolokatory s sintezirovannoj aperturoj antenny. Radiolokatory s sintezirovannoj aperturoj antenny. SPb. 1999 (in Russian).
  7. Hambaryan A.K., et al. Polarimetric, combined, short pulse scatterometer-radiometer system at 5.6 GHz. 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2007. P. 4471-4473.
  8. Arakeljan A.K. i dr. Dvuhchastotnyj diapazonov S i Ku chetyrehkanal'nyj mnogopoljarizacionnyj sovmeshhennyj skatterometr-radiometr. Uspehi sovremennoj radiojelektroniki. 2011. № 2. S. 55-65 (in Russian).
  9. Suslov A.N., Pjatsi A.H., Kalitjonkov N.V. Perspektivy ispol'zovanija na sudah radioteplolokatorov v sovremennyh uslovijah sudohodstva. Vestnik Murmanskogo gosudarstvennogo tehnicheskogo universiteta. 2009. T. 12. № 2. S. 239-249 (in Russian).
  10. Agasieva S.V., et al. Development results of the unified receiving module for multichannel medical radio thermographs. 2014 24th International Crimean Conference Microwave & Telecommunication Technology. IEEE. 2014. P. 1045-1046.
  11. Zhorina L.V. Metody neinvazivnogo izmerenija vnutrennej temperatury tela. Vestnik rossijskih universitetov. Matematika. 2017. T. 22. № 2. S. 464-470 (in Russian).
  12. Losev A.G., Popov I.E., Gudkov A.G., Chizhikov S.V. Intellektual'nyj analiz dannyh mikrovolnovoj radiotermometrii v medicinskoj diagnostike. Nanotehnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 1. S.5–22. DOI: https://doi.org/10.18127/j22250980-202301-01 (in Russian).
  13. Leushin V.Y., et al. Principles of Construction and Approaches to Further Improvements in Multichannel Multifrequency Radiothermographs. Biomedical Engineering. 2023. V. 56. P. 449-452.
  14. Sharkov E. Radioteplovoe distancionnoe zondirovanie Zemli: fizicheskie osnovy. V 2-h tomah. T. 1. M.: IKI RAN. 2014. 544 s. (in Russian).
  15. Grenkov S.A., Kol'cov N.E. Spektral'no-selektivnyj modul' radiometra s zashhitoj ot radiopomeh. Izvestija vuzov. Ser. Radiofizika. 2015. T. 58. № 7. S. 769-777 (in Russian).
  16. Scott A.W., Frobenius R., Frobenius R. Measurements for Cellular Phones and Wireless Data Systems. Wiley-IEEE Press. 2008.
  17. Lance A.L., Seal W.D., Labaar F. Phase noise and am noise measurements in the frequency domain. Infrared Millimeter Waves. 1984. V. 11. P. 239.
  18. Walls F.L. Correlation Between Upper and Lower Sidebands. IEEE Trans. Ultrason., Ferroelectrics, and Freq. Cont. 2000. V. 47. P. 407-410.
Date of receipt: 27.06.2023
Approved after review: 03.07.2023
Accepted for publication: 28.08.2023