350 rub
Journal Radioengineering №9 for 2023 г.
Article in number:
Designing of a multi-frequency vibrator antenna on meander line with resonant loads and fragmented “floating ground”
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202309-13
UDC: 621.396.673
Authors:

S.N. Boyko1, A.M. Egiazaryan2, O.V. Koryshev3, I.M. Trukhachev4

1-4 JSC “SRI SDE” (Moscow, Russia)

Abstract:

Problem definition. Many VHF communication devices include multi-frequency vibrator antennas, among which a special place is occupied by the vibrator antennas with reactive loads as the most compact and simplest to produce. However, inductive loads usually used in practice don’t provide current cut-off at higher operating frequencies, which results in deformations of radiation patterns, and resonant circuits loads don’t provide sufficient shortening of the vibrator antenna due to appearance of shunt inductances. There is a need to formulate the new idea of the designing the multi-frequency vibrator antenna, which has absolutely another mechanism of work, is needed.

Purpose. The purposes of this article are: to suggest the idea of the design the multi-frequency vibrator antennas, based on hybrid of meander line with parallel LC-circuits and fragmented “floating ground”; to form an equivalent scheme for calculating characteristics; to develop a methodology for calculating this type of antennas characteristics (input impedance, VSWR, current distributions over the vibrator and far-field radiation patterns); to do the calculation of characteristics of the monopole antenna on meander line with loads and to make an experimental check of the theoretical results.

Results. A design of the multi-frequency vibrator antenna on meander line with parallel LC-circuits loads and fragmented “floating ground” is shown. An equivalent scheme for calculating antenna characteristics is given, an algorithm of calculation of input characteristics and current distributions over the antenna (both meander and “floating ground”) is described. The calculation of input impedance, VSWR, current distributions and radiation patterns of the vibrator antenna with two LC-circuits loads in meander line is done. An experimental check of the theoretical results in VSWR and far-field radiation patterns is made. Applicability of the proposed idea and methodology for the design the multi-frequency vibrator antennas on meander line is shown by analyzing calculated and experimental data.

Practical significance. The results of this work can be used to design the multi-frequency VHF vibrator antennas with resonant loads, which have the identical radiation patterns at all operating frequencies.

Pages: 149-167
For citation

Boyko S.N., Egiazaryan A.M., Koryshev O.V., Trukhachev I.M. Designing of a multi-frequency vibrator antenna on meander line with resonant loads and fragmented “floating ground”. Radiotekhnika. 2023. V. 87. № 9. P. 149−167. DOI: https://doi.org/10.18127/
j00338486-202309-13 (In Russian)

References
  1. Neganov V.A., Tabakov D.P., Jarovoj G.P. Sovremennaja teorija i prakticheskie primenenija antenn. Pod red. V.A. Neganova. M.: Radiotehnika. 2009. 720 s. (in Russian).
  2. Kocherzhevskij G.N., Erohin G.A., Kozyrev N.D. Antenno-fidernye ustrojstva. M.: Radio i svjaz'. 1989. 352 s. (in Russian).
  3. Fradin A.Z. Antenno-fidernye ustrojstva. M.: Svjaz'. 1977. 440 s. (in Russian).
  4. Vojtovich N.I., Ershov A.V., Sokolov A.N. UKV vibratornye antenny: Ucheb. posobie. Cheljabinsk: Izd-vo JuUrGU. 2002. 85 s. (in Russian).
  5. Ovsjannikov V.V. Jelektricheski malye vibratornye, spiral'nye i petlevye antenny. Radiofizika i jelektronika. 2017. T. 8(22). № 1. S. 57–67 (in Russian).
  6. Volakis J. Antenna Engineering Handbook. 4th Ed. New York: Mcgraw-Hill. 2007. 1755 p.
  7. Rothammel' K. Antenny. Izd. 11-e, ispr. 2019. 417 s. (in Russian).
  8. Bojko S.N., Zevakin E.A., Koryshev O.V., Truhachev I.M. Metodika raschjota vhodnyh harakteristik vibratornoj antenny s reaktivnymi vkljuchenijami. Radiotehnika. 2020. T. 84. № 5(10). S. 53–66. DOI: 10.18127/j00338486-202005(10)-06 (in Russian).
  9. Bojko S.N., Zevakin E.A., Koryshev O.V., Truhachev I.M. Metodika proektirovanija spiral'nyh vibratornyh antenn s reaktivnymi vkljuchenijami. Antenny. 2020. № 6(268). S. 54–67 (in Russian).
  10. Ovsjannikov V.V. Vibratornye antenny s reaktivnymi nagruzkami. M.: Radio i svjaz'. 1985. 120 s. (in Russian).
  11. Weglarz V.M., Weisser C.F., Cohen J.S. Triple frequency, split monopole, emergency locator transmitter antenna. US 6,411,260 B1, H01Q 5/01, H01Q 9/32. Publ. 25.06.2002. Appl. No. 08/847,804.
  12. Bojko S.N., Egiazarjan A.M., Koryshev O.V., Truhachev I.M. Proektirovanie mnogochastotnoj vibratornoj antenny s vkljuchenijami v vide parallel'nyh LC-konturov. Radiotehnika. 2022. T. 86. № 5. S. 145−157. DOI: https://doi.org/10.18127/j00338486-202205-17 (in Russian).
  13. Vychislitel'nye metody v jelektrodinamike. Pod red. R. Mitry. M.: Mir. 1977. 488 s. (in Russian).
  14. Neganov V.A., Tabakov D.P., Morozov S.V. Matematicheskaja model' shirokopolosnogo tonkoprovolochnogo jelektricheskogo vibratora. Fizika volnovyh processov i radiotehnicheskie sistemy. 2015. T. 18. № 4. S. 34–40 (in Russian).
  15. Neganov V.A., Tabakov D.P. Singuljarnye integral'nye predstavlenija jelektromagnitnogo polja kak sredstvo korrektnogo reshenija antennyh zadach// Fizika volnovyh processov i radiotehnicheskie sistemy. 2014. T. 17. № 3. S. 9–23 (in Russian).
  16. Hosono R., Guan N., Tayama H., Furuya H. An Equivalent Circuit Model for Meander-line Monopole Antenna Attached to Metallic Plate. Proceedings of ISAP 2012. Nagoya. Japan. 2012. P. 1421-1424.
  17. Rouissi I., Floc’h J.M., Travelsi H. Design of frequency reconfigurable multiband meander antenna using varactor diode for wireless communication. International Journal of Advanced Computer Science and Applications. 2017. V. 8. № 3. P. 159-164.
  18. Sazonov D.M. Antenny i ustrojstva SVCh. M.: Vysshaja shkola. 1988. 432 s. (in Russian).
  19. Baharev S.I., Vol'man V.I., Lib Ju.N. i dr. Spravochnik po raschetu i konstruirovaniju SVCh poloskovyh ustrojstv. Pod red.
    V.I. Vol'mana. M.: Radio i svjaz'. 1982. 328 s. (in Russian).
  20. Shhelkunov S.A., Friis G.T. Antenny (Teorija i praktika). Per. s angl. pod red. L.D. Bahraha. M.: Sovetskoe radio. 1955. 604 s. (in Russian).
  21. Demirchjan K.S., Nejman L.R., Korovkin N.V, Chechurin V.L. Teoreticheskie osnovy jelektrotehniki. T. 2. SPb: Piter. 2003. 575 s. (in Russian).
  22. Bhavarthe P.P., Rathod S.S., Reddy K.T.V. A Compact Dual Band Gap Electromagnetic Band Gap Structure. IEEE Transactions on antennas and propagation. 2019. V. 67. № 1. P. 596-600.
  23. Demirchjan K.S., Nejman L.R, Korovkin N.V, Chechurin V.L. Teoreticheskie osnovy jelektrotehniki. T. 3. SPb: Piter. 2003. 463 s. (in Russian).
  24. Olaode O.O., Palmer W.D., Joines W.T. Characterization of Meander Dipole Antennas with a Geometry-Based, Frequency-Independed Lumped Element Model. IEEE Antennas and Wireless Propagation Letters. 2012. V. 11. P. 346–349.
  25. Iossel' Ju.A., Kochanov Je.S., Strunskij M.G. Raschet jelektricheskoj emkosti. Izd. 2-e, pererab. i dop. Leningrad: Jenergoizdat, Leningr. otdelenie. 1981. 288 s. (in Russian).
  26. Tan W., Shen Z. A Dual-Band Dual-Sleeve Monopole Antenna. IEEE Antennas and wireless propagation letters. 2017. V. 16.
    P. 2951-2954.
  27. Antoniades M.A., Eleftheriades G.V. Multiband Compact Printed Dipole Antennas Using NRI-TL Metamaterial Loading. IEEE Transactions on antennas and propagation. 2012. V. 60. № 12. P. 5613-5626.
Date of receipt: 23.06.2023
Approved after review: 03.07.2023
Accepted for publication: 28.08.2023