V.M. Artyushenko1, V.I. Volovach2
1 Technological University n.a. twice Hero of the Soviet Union pilot-cosmonaut A.A. Leonov (Korolev, Russia)
2 Volga State University of Service (Togliatti, Russia)
Modern short-range wireless devices are widely used for data transmission and / or control actions in various radio engineering and information-measuring networks. Such a device in the process of use is in the conditions of a potential violation of the permissible type, which limits the possibilities of their application.
The aim of the work is to evaluate the Gaussian noise, harmonic type noise and combined noise on short-range wireless devices using pseudo-random frequency conversion and frequency ripple.
An estimate of the influence of various types of noise on the named wireless devices is obtained, as well as the dependence of the average error probability on the signal-to-noise and signal-to-interference ratios. It is shown that devices in which the frequency span between channels is continuously changing have the highest noise immunity, and this is also typical for devices with the highest signal-to-noise ratio. The increase in the noise immunity of devices increases with the size of the signal alphabet. It is shown that the noise immunity of the device when exposed to combined noise, which is a superposition of noise and a harmonic signal, differs little when exposed to one of the named noises. It is noted that the use of binary block codes increases the noise immunity of the device.
In the course of the work, practically significant results were obtained, which make it possible to evaluate the noise immunity of these devices for various values of the signal-to-noise and signal-to- interference ratios, as well as the size of the signal alphabet.
The results obtained can be used in the construction and analysis of wireless devices operating in the unlicensed bands below 1 GHz.
Artyushenko V.M., Volovach V.I. The evaluation of the influence of Gaussian noise, harmonic type noise and combined noise to
short range wireless devices. Radiotekhnika. 2023. V. 87. № 9. P. 124−137. DOI: https://doi.org/10.18127/j00338486-202309-11 (In Russian)
- Anikin A. Obzor sovremennyh tehnologij besprovodnoj peredachi dannyh v chastotnyh diapazonah ISM (Bluetooth, ZigBee, Wi-Fi) i 434/868 MGc. Besprovodnye tehnologii. 2011. № 4(25). S. 6-12 (in Russian).
- Smirnova E.V., Proletarskij A.V. Tehnologii sovremennyh besprovodnyh Wi-Fi setej. M.: MGTU im. N.Je. Baumana. 2017. 446 s. (in Russian).
- Carles Gomez, Joaquim Oller, Josep Paradells. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors. 2012. V. 12. № 9. P. 11734-11759. DOI: 10.3390/s120911734.
- Finogeev A.G. Besprovodnye tehnologii peredachi dannyh dlja sozdanija sistem upravlenija i personal'noj informacionnoj podderzhki. URL: http://window.edu.ru/resource/177/56177/files/62331e1-st18.pdf (in Russian).
- Shuai Cao, Xianging Chen, BenChi Yuan. Overview of Short-range Wireless Communication Protocol. 2022 7th International Conference of Computer and Communication Systems (ICCCS). Wuhau, China. 22-25 April 2022. DOI: https://doi.org/10.1109/ICCCS55155.2022.9846125.
- Artjushenko V.M., Korchagin V.A. Analiz osobennostej rasprostranenija radiovoln v pikosetjah besprovodnyh ustrojstv malogo radiusa dejstvija. Promyshlennyj servis. 2009. № 4(31). S. 32-37 (in Russian).
- Artjushenko V.M., Volovach V.I. Opredelenie dostovernosti obnaruzhenija protjazhennyh ob’ektov po PRV dal'nosti dejst-vija radiotehnicheskih ustrojstv obnaruzhenija. Radiotehnika. 2015. № 2. S. 30-38 (in Russian).
- Artjushenko V.M., Volovach V.I. Opredelenie jeffektivnosti obnaruzhenija ob’ektov radiotehnicheskimi ustrojstvami blizhnego dejstvija. Radiotehnika. 2015. № 2. S. 39-46 (in Russian).
- Artjushenko V.M., Volovach V.I. Ocenka pogreshnosti izmerenija mgnovennoj chastoty doplerovskogo signala v porogovom rezhime demoduljacii. Radiotehnika. 2016. № 2. S. 83-90 (in Russian).
- Nagendra Kumar Vishwakarma, Rakesh Kumar Singh. Design and Implementations of FHSS (Frequency Hopping Spread Spectrum) Synthesizer. 2021 7th International Conference of Signal Processing and Communication (ICSC). Noida, India. 25-27 November 2021. 2020. DOI: https://doi.org/10.1109/ICSC53193.2021.9673302
- Borisov V.I., Zinchuk V.M., Limarev A.E. Pomehozashhishhennost' sistem radiosvjazi s rasshireniem spektra signalov metodom psevdosluchajnoj perestrojki rabochej chastoty. M.: RadioSoft. 2008. 512 s. (in Russian).
- Skljar B. Cifrovaja svjaz'. Teoreticheskie osnovy i prakticheskoe primenenie. M.: ID «Vil'jams». 2003. 1104 s. (in Russian).
- Zaichang Wang, Jian Cheng, Ronghui Su, Qinchi Luo, Xidan Na. Signal Detection and Parameter Estimation of Low SNR Direct Sequence Spread Spectrum Signal. 2023 6th International Conference on Communication Engineering and Technology (ICCET). Xi`an, China. 24-26 February 2023. DOI: https://doi.org/10.1109/ICCET58756.2023.00027.
- Borisov V.I., Zinchuk V.M., Muhini N.P. i dr. Ocenka vozdejstvija otvetnyh pomeh na sistemy radiosvjazi s medlennoj PPRCh. Teorija i tehnika radiosvjazi. 1994. Vyp. 1. S. 3-19 (in Russian).
- Borisov V.I., Zinchuk V.M., Limarev A.E. Pomehozashhishhennost' sistem radiosvjazi s rasshireniem spektra signalov meto-dom psevdosluchajnoj perestrojki rabochej chastoty. M.: RadioSoft. 2018. 512 s. (in Russian).
- Torrieri D.J. The Information – Bit Error for Block Codes. IEEE Trans. 1984. V. COM-32. № 4. P. 474-476.
- Korzhik V.I., Fink L.M., Shhelkunov K.N. Raschet pomehoustojchivosti sistem peredachi diskretnyh soobshhenij: Spra-vochnik. M.: Radio i svjaz'. 1981. 232 s. (in Russian).
- Dikson R.K. Shirokopolosnye sistemy: Per. s angl. Pod red. V.I. Zhuravleva. M.: Svjaz'. 1979. 304 s. (in Russian).
- Blanchard J.E. A slow frequency-hopping technique that is robust to repeat jamming. IEEE Milconf. 82. Conf. Boston. 1982. V. 1.
P. 14.1-14.19. - Torrieri D.J. Principles of Secure Communication Systems. MA.: Artech House Inc. 1985. 286 p.