350 rub
Journal Radioengineering №9 for 2023 г.
Article in number:
Passive damping of the beam elements of antenna systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202309-06
UDC: 359.3
Authors:

G.I. Kriven1

1 PJSC “Radiofizika” (Moscow, Russia)

1 Moscow Aviation Institute (National Research University) (Moscow, Russia)

Abstract:

Beams are one of the most common elements of antennas - they can be used both as elements for receiving and transmitting radio signals, and as design solutions for various purposes. The paper considers a hinged-supported composite beam consisting of symmetrical layers reinforced with fiber with a viscoelastic coating. The representative element forming the beam layer consists of a fiber, a viscoelastic layer and a matrix. To assess the effect of the volumetric content of reinforcing fiber with a viscoelastic coating on the loss coefficient of a layered composite beam, the viscoelastic analogy method is used, within which the properties of a viscoelastic material are specified by complex quantities. And to evaluate the effect of the volumetric content of reinforcing fiber with a viscoelastic coating on the loss modulus of the composite material, the three-phase method extended to a multiphase medium and the viscoelastic analogy method are used. A study is also carried out to study the influence of the ratio of the real parameter of the loss modulus of the viscoelastic layer to the shear modulus of the reinforcing fiber on the effective transverse loss modulus of the composite material and on the loss coefficient of the laminated composite beam. Numerical values of the effective transverse loss moduli for the composite material under study and the loss coefficients of a simply supported beam are given depending on the thickness of the viscoelastic layer. For the parameters under study, the nature of the peak values is analyzed and ways of influencing their position and shape are discussed. It is assumed that such beams can find wide application in antenna technology, since they will significantly reduce mechanical resonant vibrations of antenna system structures, while maintaining their rigidity and strength.

Pages: 66-74
For citation

Kriven G.I. Passive damping of the beam elements of antenna systems. Radiotekhnika. 2023. V. 87. № 9. P. 66−74.
DOI: https://doi.org/10.18127/j00338486-202309-06 (In Russian)

References
  1. Han M.C., Li H.Y., Sun G.L., et al. Influence mechanism of antenna vibration for digital wireless communication system [J]. Chinese journal of radio science. 2021. V. 36. № 1. Р. 136-141.
  2. Angeletti F., Gasbarri P., Sabatini M., Iannelli P. Design and performance assessment of a distributed vibration suppression system of a large flexible antenna during attitude manoeuvres. Acta Astronautica. 2020.
  3. Telepnev P.P., Kuznecov D.A. Osnovy proektirovanija vibrozashhity kosmicheskih apparatov: Ucheb. posobie. M: MGTU im. N.Je. Baumana. 2019. 106 s. (in Russian).
  4. Olejnikov O.B., Dubovik I.N. Analiz ustojchivosti antennyh konstrukcij pri dejstvii staticheskih nagruzok s uchetom jeffekta geometricheskoj nelinejnosti. Radiotehnika. 2023. T. 87. № 3. S. 65-70. DOI: https://doi.org/10.18127/j00338486-202303-06 (in Russian)
  5. Gibson R.F., Chen Y., Zhao H. Improvement of vibration damping capacity and fracture toughness in composite laminates by the use of polymeric interleaves. J. Eng. Mater. Technol. 2001. V. 123. № 3. Р. 309–314. DOI: https://doi.org/10.1115/1.1370385.
  6. Yang J., Xiong J., Ma L., Wang B., Zhang G., Wu L. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Compos. Struct. 2013. V. 106 (February). Р. 570–580. DOI: https://doi.org/10.1016/j.compstruct.2013.07.015.
  7. Fotsing E.R., Sola M., Ross A., Ruiz E. Lightweight damping of composite sandwich beams: Experimental analysis. J. Compos. Mater. 2013. V. 47. № 12. Р. 1501–1511.
  8. Finegan I.C., Gibson R.F. Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers. Compos. Sci. Technol. 2000. V. 60. № 7. Р. 1077–1084.
  9. Gusev A.A., Lurie S.A. Loss amplification effect in multiphase materials with viscoelastic interfaces. Macromolecules. 2009. V. 42. № 14. Р. 5372–5377.
  10. Finegan I.C., Gibson R.F. Improvement of damping at the micromechanical level in polymer composite materials under transverse normal loading by the use of special fiber coatings. J. Vibr. Acoust. Trans. Asme. 1998. V. 120. № 2. Р. 623–627.
  11. Lurie S., Minhat M., Tuchkova N., Soliaev J. On remarkable loss amplification mechanism in fiber reinforced laminated composite materials. Appl. Compos. Mater. 2014. V. 21. № 1. Р. 179–196.
  12. Gusev A.A. Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions. Int. J. Solids Struct. 2016. Р. 79–87, 88-89.
  13. Gusev A.A. Optimum microstructural design of coated sphere filled viscoelastic composites for structural noise and vibration damping applications. Int. J. Solids Struct. 2017. № 128. Р. 1–10.
  14. Kriven' G.I., Shavelkin D.S. Kolebanie balki, sostojashhej iz voloknistogo kompozita s vjazkouprugim pokrytiem. Mehanika kompozicionnyh materialov i konstrukcij. 2022. T. 8. № 4. S. 511-523 (in Russian).
  15. Timoshenko S.P. Kolebanija v inzhenernom dele. M: Mashinostroenie. 1985. 472 s. (in Russian).
  16. Arikoglu A. Multi-objective optimal design of hybrid viscoelastic/composite sandwich beams by using the generalized differential quadrature method and the non-dominated sorting genetic algorithm II. Struct. Multidiscip. Optim. 2017. V. 56. № 4. Р. 885-901.
  17. Lurie S., Solyaev Y., Ustenko A. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers. Applied Composite Materials. 2018. № 26. Р. 389–408.
Date of receipt: 04.08.2023
Approved after review: 07.08.2023
Accepted for publication: 28.08.2023