350 rub
Journal Radioengineering №8 for 2023 г.
Article in number:
Investigation of active laser delivery and antimycotic activity of zinc-containing nanomaterials and photodynamic drugs in the treatment of onychomicosis
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202308-00
UDC: 537.312.51, 621.373.826, 616-093/098
Authors:

A.V. Belikov1, A.D. Kozlova2, Yu.V. Fedorova3, S.N. Smirnov4

1,3,4 ITMO University (St. Petersburg, Russia)

1 Pavlov First St. Petersburg State Medical University (St. Petersburg, Russia)

2 Military Space Academy named after A.F. Mozhaisky (St. Petersburg, Russia)

Abstract:

One of the most common nail pathologies is onychomycosis, a fungal nail infection. The low efficiency of existing methods for the treatment of onychomycosis stimulates the search for new drugs and technologies for their delivery under the nail plate. The aim of the investigation was to study the possibility of using Er:YLF laser radiation for sequential laser microporation of the human nail plate and active laser delivery of modern photodynamic preparations and zinc-containing nanomaterials under the nail plate, as well as to determine their antimycotic activity against the Candida albicans fungus under photodynamic exposure with a wavelength of 656±10 nm. A 0.001 % aqueous solution of methylene blue, a chlorine-containing Revixan gel, as well as zinc-containing nanomaterials, which are aqueous solutions of polyvinylpyrrolidone gel with different concentrations of Zn(NO3)2 nanoparticles and acidity, were studied. It was established that the smallest number of laser pulses required for in vitro microporation of the nail plate and active laser delivery under the nail plate is required when using a 0.001 % aqueous solution of methylene blue, and the largest is required when using Revixan gel. For zinc-containing nanomaterials, an increase in the concentration of Zn(NO3)2 nanoparticles from 14 to 40 % leads to an increase in the number of laser pulses required for active drug delivery under the nail plate by 1.25 times, while a change in the acidity of the pH gel from 7.0 to 6.7 does not has a significant impact on it. It was found that all the studied drugs in combination with photodynamic action at a wavelength of 656±10 nm have an antimycotic effect on the Candida albicans fungus culture. The minimum growth rate of Candida albicans colonies was observed when using the Revixan gel, for which the antimycotic activity reached 73.8 %. The obtained results can be applied in the development of laser systems and technologies for the treatment of fungal diseases, including for photodynamic therapy of onychomycosis.

Pages: 116-127
For citation

Belikov A.V., Kozlova A.D., Fedorova Yu.V., Smirnov S.N. Investigation of active laser delivery and antimycotic activity of zinc-containing nanomaterials and photodynamic drugs in the treatment of onychomicosis. Radiotekhnika. 2023. V. 87. № 8. P. 116−127. DOI: https://doi.org/10.18127/j00338486-202308-19 (In Russian)

References
  1. Rich P., Scher R. K. An atlas of diseases of the nail. CRC Press. 2003.
  2. Elewski B.E. Onychomycosis. American journal of clinical dermatology. 2000. Т. 1. № 1. Р. 19-26.
  3. Kubasova N.L. Osobennosti diagnostiki i lechenija onihomikoza, obuslovlennogo nedermatomicetami: Avtoref. dis. … kand. med. nauk: 03.02.12. SPb. 2015 121 s. (in Russian).
  4. Sergeev A.Ju., Sergeev Ju.V. Gribkovye infekcii. Rukovodstvo dlja vrachej. 2003. T. 2 (in Russian).
  5. Faergerman J., Baran R. Epidemiology, clinical presentation and diagnosis of onychomycosis. British Association of Dermatologist. 2003. V. 149. № 65. Р. 1–4.
  6. Sergeev A.Ju., Sergeev Ju.V., Sergeev V.Ju. Novye koncepcii patogeneza, diagnostiki i terapii onihomikozov. Immunopatologija, allergologija, infektologija. 2007. V. 3. S. 9-16 (in Russian).
  7. Hochman L.G. Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd: YAG 1064-nm laser. Journal of Cosmetic and Laser Therapy. 2011. V. 13. № 1. Р. 2-5.
  8. Gupta A.K., Stec N., Summerbell R.C., Shear N.H., Piguet V., Tosti A., Piraccini B.M. Onychomycosis: a review. Journal of the European Academy of Dermatology and Venereology. 2020. V. 34. № 9. Р. 1972-1990.
  9. Tsai M.T., Tsai T.Y., Shen S.C., Ng C.Y., Lee Y.J., Lee J.D., Yang C.H. Evaluation of laser-assisted trans-nail drug delivery with optical coherence tomography. Sensors. 2016. V. 16. № 12. Р. 2111.
  10. Murdan S. Enhancing the nail permeability of topically applied drugs. Expert opinion on drug delivery. 2008. Т. 5. № 11. Р. 1267-1282.
  11. Neev J., Nelson J.S., Critelli M., McCullough J.L., Cheung E., Carrasco W.A., Rubenchik A.M., Da Silva L.B., Perry M.D., Stuart B.C. Ablation of human nail by pulsed lasers. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 1997. V. 21. № 2. Р. 186-192.
  12. Bendit E.G. Infrared absorption spectrum of keratin. I. Spectra of α‐, β‐, and supercontracted keratin. Biopolymers: Original Research on Biomolecules. 1966. V. 4. № 5. Р. 539-559.
  13. Morais O.O., Costa I.M.C., Gomes C.M., Shinzato D.H., Ayres G.M.C., Cardoso R.M. The use of the Er: YAG 2940 nm laser associated with amorolfine lacquer in the treatment of onychomycosis. Anais brasileiros de dermatologia. 2013. V. 88. Р. 847-849.
  14. Belikov A.V., Tavalinskaya A.D., Smirnov S.N., Sergeev A.N. Application of Yb, Er: Glass laser radiation for active drug delivery at the treatment of onychomycosis. Journal of Biomedical Photonics & Engineering. 2019. V. 5. № 1. P. 010305.
  15. Belikov A.V., Tavalinskaya A.D., Smirnov S.N., Sergeev A.N. Active Er-laser drug delivery using drug-impregnated gel for treatment of nail diseases. Biomedical Optics Express. 2019. V. 10. № 7. PС. 3232-3240.
  16. Belikov A.V., Skrypnik A.V., Sergeev A.N., Smirnov S.N., Tavalinskaya A.D. Er: YLF-laser microperforation of the nail plate for drug delivery. Saratov Fall Meeting 2017: Optical Technologies in Biophysics and Medicine XIX. SPIE. 2018. V. 10716. P. 234-241.
  17. Belikov A.V., Skrypnik A.V., Shatilova K.V., Tuchin V.V. Multi‐beam laser‐induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin. Lasers in surgery and medicine. 2015. V. 47. № 9. P. 723-736.
  18. Doukas A.G., Kollias N. Transdermal drug delivery with a pressure wave. Advanced drug delivery reviews. 2004. V. 56. № 5.
    P. 559-579.
  19. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions. Photochemistry and photobiology. 1991. V. 53. № 6. P. 825-835.
  20. Patent RU 2224556C2 (RF), MPK A61M 37/00, A61N 5/06. Ustrojstvo dlja kombinirovannoj lazernoj dostavki lekarstv. V.P. Zharov; zajavitel' i patentoobladatel' V. P. Zharov. №2001135459/14; zajavl. 28.12.2001; opubl. 27.02.2004. Bjul. № 1 (in Russian).
  21. Belikov A.V., Tavalinskaya A.D., Smirnov S.N. Investigation of the Dual-Stage Method of Active Er:YLF Laser Drug Delivery Through the Nail and Laser-Induced Transformations of the Drug Extinction Spectrum. Lasers in Surgery and Medicine. 2021.
    V. 53. № 8. P. 1122-1131.
  22. Souza R.C., Junqueira J.C., Rossoni R.D., Pereira C.A., Munin E., Jorge A.O.C. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers in medical science. 2010. V. 25. № 3. P. 385-389.
  23. Shakhova M., Loginova D., Meller A., Sapunov D., Orlinskaya N., Shakhov A., Khilov A., Kirillin M. Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study. Journal of Biomedical Optics. 2018. V. 23. № 9. P. 091412.
  24. Evstropiev S.K., Karavaeva A.V., Dukelskii K.V., Kiselev V.M., Evstropyev K.S., Nikonorov N.V., Kolobkova E.V. Transparent bactericidal coatings based on zinc and cerium oxides. Ceramics International. 2017. V. 43. № 16. P. 14504-14510.
  25. Raghupathi K., Koodali R.T., Manna A.C.R. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011. V. 27. № 7. P. 4020-4028.
  26. Bulgakova N.N., Shugajlov I.A. Fotodinamicheskaja terapija (obzor literatury). Innovacionnaja stomatologija. 2012. № 1. S. 14-23 (in Russian).
  27. Pandey D.K., Tripathi N.N., Tripathi R.D., Dixit S.N. Fungitoxic and phytotoxic properties of the essential oil of Hyptissuaveolens. Journal of Plant Diseases and Protection. 1982. P. 344-349.
  28. Belikov A.V., Smirnov S.N., Tavalinskaya A.D. Laser delivery and spectral study of a chlorine-containing drug for the treatment of onychomycosis at sequential laser (λ=2810 nm) and photodynamic (λ=656±10 nm) impact. Optics and spectroscopy. 2021. V. 129. № 7. Р. 754-762.
Date of receipt: 13.06.2023
Approved after review: 21.06.2023
Accepted for publication: 26.07.2023