350 rub
Journal Radioengineering №8 for 2023 г.
Article in number:
Ensuring the performance of modified microstrip loops in the frequency band
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202308-05
UDC: 621.396.67
Authors:

N.N. Shchetinin1, A.V. Ostankov2, E.V. Chernoyarova3, Yu.E. Kalinin4

1 Voronezh Institute of Russian Penitentiary System (Voronezh, Russia)

2,4 FSBEI of HE “Voronezh State Technical University” (Voronezh, Russia)

3 National Research University «Moscow Power Engineering Institute» (Moscow, Russia)

Abstract:

Problem statement. Microstrip loop structures of various configurations are widely used to form topologies of multi-pole microwave devices. In this regard, there is a need to study the frequency properties and topological features of the construction of loop structures that determine the amplitude and phase frequency characteristics, as well as the overall parameters of a microstrip radio engineering device. 

Objective. Studying of frequency characteristics of T- and U-shaped loop configurations implemented on the basis of high-resistance and low-resistance segments of microstrip transmission lines that allow configuring small-sized topologies of multi-pole devices with acceptable electrical characteristics.

Results. A number of basic topologies of loop structures designed to function in given frequency bands have been studied. With the help of electrodynamic modeling and parametric optimization, according to a number of criteria (given wave resistance, phase shift, reflection coefficient), the necessary geometric dimensions of the modified topologies were determined. The dependence of the frequency band on the geometric dimensions of the low-resistance loop of the T-section is revealed. By the level of “minus” 20 dB from the maximum of the reflection coefficient, the values of the frequency band width of two types of T-structures – symmetrical and counter-pin - were determined and compared. It is shown that the U-shaped section is characterized by an increased frequency band due to better matching, however, its geometric dimensions exceed the dimensions of the basic T-structures.

Practical significance. Modified microstrip loop structures in some cases are able to effectively replace quarter-wave segments of transmission lines, on the basis of which most microwave devices are formed (directional couplers, power dividers, electric filters, phase shifters, crossovers, etc.). The use of combinations of T- and U-shaped structures leads to a significant reduction in the area of microstrip devices designed to operate in the UHF and Microwave bands.

The work was supported by the Ministry of Education and Science of the Russian Federation (project FSWF-2023-0012).

Pages: 28-35
For citation

Shchetinin N.N., Ostankov A.V., Chernoyarova E.V., Kalinin Yu.E. Ensuring the performance of modified microstrip loops in the frequency band. Radiotekhnika. 2023. V. 87. № 8. P. 28−35. DOI: https://doi.org/10.18127/j00338486-202308-05 (In Russian)

References
  1. Letavin D.A. Miniatjurnye konstrukcii mikropoloskovyh mostovyh ustrojstv. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. № 2. S. 917-921 (in Russian).
  2. Ostankov A.V., Shhetinin N.N. Mikropoloskovye napravlennye otvetviteli UVCh- i SVCh-diapazonov. Radiostroenie. 2017. № 5. S. 1-37 (in Russian).
  3. Ostankov A.V., Kostrova V.N., Shhetinin N.N., Razinkin K.A. Modifikacii napravlennyh otvetvitelej s malorazmernymi shlejfami nestandartnoj konfiguracii. Radiotehnika. 2020. T. 84. № 6(12). S. 49-57. DOI: 10.18127/j00338486-202006(12)-09 (in Russian).
  4. http://www.keysight.com/us/en/home.html.
  5. https://www.3ds.com/ru/produkty-i-uslugi/simulia/produkty/cst-studio-suite.
  6. https://www.ansys.com/products/electronics/ansys-hfss.
  7. Letavin D.A. Miniatjurizacija kvadraturnyh shlejfnyh napravlennyh otvetvitelej. Zhurnal radiojelektroniki. 2021. № 2. S. 1-22 (in Russian).
  8. Ostankov A.V., Shhetinin N.N., Bokova E.A., Plotnikov A.E. Modifikacija mikropoloskovogo delitelja-summatora moshhnosti Gizelja. Cb. mat. Vseross. nauch.-praktich. konf. «Aktual'nye problemy dejatel'nosti podrazdelenij UIS». Voronezh. 2021. С. 170-172 (in Russian).
  9. Letavin D.A. Two methods for miniaturization of stub quadrature couplers. Journal of Communications Technology and Electronics. 2018. V. 63. № 8. P. 933-935.
  10. Ostankov A.V., Shhetinin N.N. Mikropoloskovyj napravlennyj otvetvitel', vypolnennyj na osnove otrezkov iskusstvennyh dlinnyh linij. Sovremennaja nauka: aktual'nye problemy teorii i praktiki. Ser. Estestvennye i tehnicheskie nauki. 2016. № 1. S. 23-25 (in Russian).
  11. Wang C-W., Ma T-G., Yang C-F. A new planar artificial transmission line and its applications to a miniaturized Butler matrix. IEEE Transactions on Microwave Theory and Techniques. 2007. V. 55. P. 2792-2801.
  12. Harrington R.F. Field computation by moment method. Macmillan. 1968. 240 p.
  13. Nikol'skij V.V. Variacionnye metody dlja vnutrennih zadach jelektrodinamiki. M.: Nauka. 1967. 460 s. (in Russian).
  14. Grigor'ev A.D. Metody vychislitel'noj jelektrodinamiki. M.: Fizmatlit. 2012. 232 s. (in Russian).
  15. Letavin D.A. Miniatjurizacija delitelej moshhnosti UVCh-diapazona. M.: ID akademii estestvoznanija. 2022. 138 s. (in Russian).
  16. Ostankov A.V., Shhetinin N.N., Dashjan S.Ju. Chastotnye harakteristiki modificirovannyh mikropoloskovyh shlejfov, jekvivalentnyh chetvert'volnovym otrezkam. Vestnik VGTU. 2022. T. 18. № 3. S. 51-56 (in Russian).
  17. Shhetinin N.N., Ostankov A.V., Vorob'eva E.I. Matematicheskaja model' dlja proektirovanija mikropoloskovogo napravlennogo otvetvitelja na kvazisosredotochennyh jelementah. Vestnik VGTU. 2014. T. 10. № 3-1. S. 66-70 (in Russian).
  18. Ostankov A.V., Shhetinin N.N., Dashjan S.Ju. Metodika proektirovanija mikropoloskovyh napravlennyh otvetvitelej na vstrechno-shtyrevyh strukturah. Vestnik VGTU. 2020. T. 16. № 4. S. 70-75 (in Russian).
  19. Shhetinin N.N., Ostankov A.V., Mel'nik V.A. Realizacija planarnogo jelementa topologii mikropoloskovogo ustrojstva po zadannoj emkosti v sheme zameshhenija. Sb. tr. XXV Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». Voronezh. 2019.
    S. 50-55 (in Russian).
Date of receipt: 15.05.2023
Approved after review: 22.05.2023
Accepted for publication: 28.07.2023