350 rub
Journal Radioengineering №7 for 2023 г.
Article in number:
Asynchronous STW resonators with the high quality factor and reduced sizes
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202307-14
UDC: 621.372.63
Authors:

S.A. Doberstein1, I.V. Veremeev2, V.K. Razgonyaev3

1,2 Omsk Scientific-Research Institute of Instrument Engineering (Omsk, Russia)

1–3 Omsk Scientific Center SB RAS (Institute of Radiophysics and Physical Electronics) (Omsk, Russia)

Abstract:

Surface transverse waves (STW) on quartz have the high propagation velocity, which is higher by 60% than velocity of the Rayleigh surface acoustic waves (SAW), high temperature stability comparable with temperature stability of SAW on quartz. Those advantages allow successfully use STW in the high frequency resonators. However, a large number of the electrodes 400 in the reflectors is required to ensure the high quality factor of the resonators. This leads to increase the resonators sizes, especially on the frequencies
< 1000 MHz. The 500-1000 MHz STW resonators with high quality factor on 36°YX90° cut quartz and reduced size were presented. Use of the asynchronous topology, constructional, topological and technological optimization with a computer simulation on the base of a equivalent circuit model allowed obtain in the frequency range of 500-1000 MHz the high quality factor of 8600-9500, reduced sizes of the topology in comparison with the known prototypes and place the resonators in the 3×3×1.2 mm and 5×5×1.8 mm SMD packages. The developed STW resonators with high quality factor and reduced sizes will be widely used in the miniature low noise oscillators.

Pages: 137-144
For citation

Doberstein S.A., Veremeev I.V., Razgonyaev V.K. Asynchronous STW resonators with the high quality factor and reduced sizes. Radiotekhnika. 2023. V. 87. № 7. P. 137−144. DOI: https://doi.org/10.18127/j00338486-202307-14 (In Russian)

References
  1. Fredit J.-M., Alzuaga S., Raiter N., Vercelloni N., Boudot R., Guichardaz B., Daniau W., Laude V., Ballandras S. Design of Asynchronous STW Resonators for Filters and High Stability Source Applications. Proc. IEEE Ultrasonics Symposium. 2005. P. 1315–1318.
  2. Wang W., Plessky V., Wang H., Wu H., Shui Y. Optimization of STW Resonator by Using FEM/BEM. Proc. IEEE Ultrasonics Symposium. 2006. P. 1863–1865.
  3. Kim C.U., Plessky V.P., Wang W., Grigorievski V.I. High Q-factor STW-Resonators on AT-cut of Quartz. Proc. IEEE Ultrasonics Symposium. 2007. P. 2582–2585.
  4. Thorvalsson T., Plessky V.P., Muckenhirn S., Joray M. GHz Range STW Resonators and Narrow Band Filters. Proc. IEEE Ultrasonics Symposium. 1994. P. 99–102.
  5. Patent na poleznuyu model' № 212600 (RF) Asinhronnyj rezonator na poperechnyh poverh-nostnyh akusticheskih volnah.
    S.A. Dobershtejn, I.V. Veremeev. N03N 9/25, N03N 9/19, zayavl. 09.03.2022, opubl. 01.08.2022, B.I. № 22 (In Russian).
  6. Hashimoto Ken-ya. Surface Acoustic Wave Devices in Telecommunication. Springer-Verlag, Berlin Heideberg. 2000. 330 p.
  7. Veremeev I.V., Dobershtejn S.A., Razgonyaev V.K. Modelirovanie PAV-rezonatorov i lestnichnyh PAV-fil'trov metodom R-matric. Tekhnika Radiosvyazi. 2018. Vyp. 3. S. 61–71 (In Russian).
  8. Soluch W. Scattering Matrix Approach to One Port SAW Resonators. Proc. of Joint Meeting of IEEE EFTF-IFCS. 1999. P. 859–862.
  9. Kuznecov A.N., Dobershtejn S.A., Veremeev I.V. CHastotnaya podstrojka STW-rezonatorov s rabochej chastotoj do 1 GGc. Tekhnika radiosvyazi. 2021. Vyp. 1 (48). S. 79–85 (In Russian).
  10. Nikonova G.S., Dobershtejn S.A., Arjanov V.А. Principi postroeniya generatorov na poverhnostnih acoustichescih volnah s malim urovnem shumov. Uspehi sovremennoi radioelectronki. 2011. № 7. S. 42-45 (In Russian).
Date of receipt: 15.11.2022
Approved after review: 22.11.2022
Accepted for publication: 23.06.2023