350 rub
Journal Radioengineering №6 for 2023 г.
Article in number:
Implementation on SDR platform of algorithms for noncoherent reception of optimal signals built on the basis of eigenfunctions
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202306-21
UDC: 621.391.8
Authors:

I.I. Lavrenyuk1, S.B. Makarov2, S.V. Zavjalov3

1-3 Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

Abstract:

Formulation of the problem. When transmitting data at speeds above the Nyquist barrier, the algorithmic and computational complexity of radio modems increases significantly, especially with incoherent signal reception. Non-coherent reception algorithms can be implemented on a software-defined radio platform, on which optimal signals are formed and received. The ability to programmatically change the radio frequency parameters of signals without making structural changes to the transmit-receive path can significantly reduce the computing resources of radio modems.

The goal is to determine the possibility of practical implementation on the SDR platform (Software Defined Radio) of noncoherent processing algorithms with decision feedback with the choice of optimal values of the observation interval for symbol rates R>1/T using optimal signals built on the basis of eigenfunctions.

Results. The possibility of using differential modulation of optimal signals, the forms of which are obtained as a result of solving an optimization problem in accordance with the criterion of the maximum decay rate of the spectrum level outside the occupied frequency band, is shown for packet data transmission protocols and the use of an incoherent processing algorithm in channels with additive Gaussian noise. It is shown that when using algorithms of incoherent element-by-element processing with optimization of the observation interval, it is possible to ensure stable reception of binary optimal signals up to transmission rates exceeding the Nyquist barrier by 1.66 times and for an error probability of 10–3, the energy loss is about 18 dB relative to potential noise immunity. The digital modem of optimal spectrally efficient signals, built on the basis of the SDR platform, makes it possible to conduct spectral and energy efficiency studies in real time in the presence of additive channel noise, and the influence of clock synchronization inaccuracies during packet messaging leads to energy losses of no more than 1 dB.

Practical significance. The use of differential modulation of optimal signals can be used in digital television and radio broadcasting systems in the European digital television standards DVB-S2 (Digital Video Broadcasting Satellite Second Generation), DVB-T2 (Digital Video Broadcasting Terrestrial Second Generation).

Pages: 163-179
For citation

Lavrenyuk I., Makarov S.B., Zavjalov S.V. Implementation on SDR platform of algorithms for noncoherent reception of optimal signals built on the basis of eigenfunctions. Radiotekhnika. 2023. V. 87. № 6. P. 153−179. DOI: https://doi.org/10.18127/j00338486-202306-21 (In Russian)

References
  1. Anderson J.B., Rusek F., Öwall V. Faster-Than-Nyquist Signaling. Proceedings of the IEEE. Aug. 2013. V. 101. № 8. Р. 1817-1830. DOI: 10.1109/JPROC.2012.2233451.
  2. Bedeer E., Yanikomeroglu H., Ahmed M.H. Reduced complexity optimal detection of binary faster-than-Nyquist signaling. 2017 IEEE International Conference on Communications (ICC). Paris, France. 2017. Р. 1-6. DOI: 10.1109/ICC.2017.7997456.
  3. Van N.F., Gel'gor A.L., Tan N.F.H. Preodolenie spektral'noj jeffektivnosti signalov OFDM putem ispol'zovanija optimal'nyh impul'sov i primenenija algoritma demoduljacii M-BCJR. Radiotehnika. 2018. № 12. S. 95-102. DOI: 10.18127/j00338486-201812-12 (In Russian).
  4. Dvornikov S.V., Pshenichnikov A.V. Formirovanie spektral'no-jeffektivnyh signal'nyh konstrukcij v radiokanalah peredachi dannyh kontrol'no-izmeritel'nyh kompleksov. Izvestija vysshih uchebnyh zavedenij. Ser. Priborostroenie. 2017. T. 60. № 3. S. 221–228 (In Russian).
  5. Gel'gor A.L., Tan N.F.H. Sintez spektral'no-jeffektivnyh signalov pri nalichii ogranichenija v vide spektral'noj maski. Radiotehnika. 2018. № 12. S. 49-57. DOI: 10.18127/j00338486-201812-06 (In Russian).
  6. Shkol'nyj L.A. Optimizacija formy ogibajushhej radioimpul'sa po minimumu vnepolosnyh izluchenij. Radiotehnika. 1975. T. 30. № 6. S. 12–15 (In Russian).
  7. Makarov S.B., Zav'jalov S.V. Optimizacija spektral'no-jeffektivnyh mnogochastotnyh neortogonal'nyh signalov. Radiotehnika. 2016. № 12. S. 121–133 (In Russian).
  8. Ovsjannikova A.S., Makarov S.B., Zav'jalov S.V., Volvenko S.V. Ocenka stepeni priblizhenija informacionnoj sistemy k granicam shennona putem ispol'zovanija optimal'nyh po kriteriju maksimal'noj koncentracii jenergii v polose chastot signalov. Radiotehnika. 2023. T. 87. № 1. S. 5-22. DOI: 10.18127/j00338486-202301-01 (In Russian).
  9. Beksaev A.S., Ovsjannikova A.S., Zav'jalov S.V. Imitacionnaja model' sistemy peredachi soobshhenij s ispol'zovaniem optimal'nyh signalov, postroennyh na osnove sobstvennyh funkcij ogranichennyh po polose jader. Radiotehnika. 2022. T. 86. № 12. S. 21-32. DOI: 10.18127/j00338486-202212-02 (In Russian).
  10. Gonorovskij I.S. Radiotehnicheskie cepi i signaly: Ucheb. dlja vuzov. Izd. 4-e, pererab. i dop. M.: Radio i svjaz'. 1986. 512 s. (In Russian).
  11. ETSI EN 302 307-1 v1.4.1 (2014-11): Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications. Part 1: DVB-S2.
  12. ETSI EN 302 755 V1.4.1 (2015-07): Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2).
  13. P.N.T.H., Gelgor A. Means to Enhance the Bandwidth Gain from Applying Multicomponent Signals in DVB-S2. 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). 2019. Р. 173-176. DOI: 10.1109/EExPolytech.2019.8906865.
  14. Nguyen Tan Hoang P., Gelgor A. Optimization of Shaping Pulse by Spectral Mask to Enhance DVB-S2. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. 11660 LNCS. Р. 649-660. DOI: 10.1007/978-3-030-30859-9_56.
  15. Xu C., et al. Sixty Years of Coherent Versus Non-Coherent Tradeoffs and the Road from 5G to Wireless Futures. IEEE Access. 2019. V. 7. Р. 178246-178299. DOI: 10.1109/ACCESS.2019.2957706.
  16. Makarov S.B., Zav'jalov S.V., Ovsjannikova A.S. Spektral'naja i jenergeticheskaja jeffektivnost' optimal'nyh AFM signalov s uvelichennymi razmerami signal'nogo sozvezdija. Voprosy radiojelektroniki. Ser. Tehnika televidenija. 2022. № 2. S. 30-43 (In Russian).
  17. Ishihara T., Sugiura S. Faster-Than-Nyquist Signaling with Differential Encoding and Non Coherent Detection. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, AB, Canada. 2018. Р. 3734-3738. DOI: 10.1109/ICASSP.2018.8462455.
  18. Lavrenyuk I., Makarov S., Polozhintsev B., Ge D. Noncoherent Detection of Faster-than-Nyquist Signal with Decision Feedback. 2021 International Conference on Electrical Engineering and Photonics (EExPolytech). St. Petersburg, Russian Federation. 2021. Р. 42-46. DOI: 10.1109/EExPolytech53083.2021.9614881.
  19. Ishihara T., Sugiura S. Differential Faster-Than-Nyquist Signaling. IEEE Access. 2018. V. 6. Р. 4199-4206. DOI: 10.1109/ACCESS.2018.2800002.
  20. Zavjalov S., Prokhorov V., Chudnov A. Comparison of Spectral Efficiency of FTN -Signaling with Coherent and Noncoherent Detection. 2022 International Conference on Electrical Engineering and Photonics (EExPolytech). St. Petersburg, Russian Federation. 2022. Р. 166-169. DOI: 10.1109/EExPolytech56308.2022.9950789.
Date of receipt: 14.02.2023
Approved after review: 21.02.2023
Accepted for publication: 28.04.2023