A.R. Bestugin1, E.A. Antokhin2, S.V. Dvornikov3, S.S. Dvornikov4, I.A. Kirshina5
1-5 SUAI (St. Petersburg, Russia)
3,4 The Military Academy of Communications n.а. Marshal of the Soviet Union S.M. Budyonny (St. Petersburg, Russia)
Despite the in-depth study of methods for detecting radio emissions under conditions of a priori uncertainty about their parameters, only asymptotic expressions for discontinuous signals have been obtained, the application of which is limited by various assumptions.
An analysis of practical solutions for estimating the time interval characterizing the position of discontinuous signals in the processed sample showed that they are based on correlation processing methods that allow obtaining acceptable results under the assumption that the channel noise is approximated by a Gaussian distribution. Under such conditions, the fragments of the input realisations containing the detectable signal are characterised by a sufficiently high variance, which increases the efficiency of their subsequent processing. In conditions of high noise levels, however, this effect is not so pronounced. This leads to the need for additional use of Fourier transform procedures, which is not always acceptable in practice.
To develop a method of detection of discontinuous signals on the basis of correlation processing of input realizations in conditions of a priori uncertainty about their parameters.
We have developed a threshold detector device with two correlators connected in series and allowing us to increase the signal-to-noise ratio in the processed realizations. The expressions for calculating the probability estimates of false alarms and target miss when detecting discontinuous signals have been presented.
The analysis of obtained results has shown that for discontinuous signals the significant problem is a high value of false alarm pro-bability.
The results have shown the effectiveness of the proposed approach to the detection of discontinuous signals based on detectors that implement serial calculation of the cross-correlation functions. The simulation results confirm the conclusion that it is necessary to increase the variance in the processed sample through the use of multiple correlators.
Thus, the additional correlation processing allows to increase efficiency of algorithms of detection of discontinuous signals.
Bestugin A.R., Antokhin E.A., Dvornikov S.V., Dvornikov S.S., Kirshina I.A. Detection of discontinuous signals from correlation processing of input realisations. Radiotekhnika. 2023. V. 87. № 6. P. 5−11. DOI: https://doi.org/10.18127/j00338486-202306-01
(In Russian)
- Egisapetov Je.G. Obnaruzhitel' shumopodobnyh signalov, ne dajushhij lozhnyh obnaruzhenij, svjazannyh s korreljacionnymi svojstvami modulirujushhih fazu signala posledovatel'nostej. Uspehi sovremennoj radiojelektroniki. 2022. T. 76. № 1. S. 51-58. DOI: 10.18127/j20700784-202201-04 (In Russian).
- Gorelik S.S. Raspoznavanie algoritmov szhatija na osnove analiza parametrov vremennogo rjada, sformirovannogo iz ocenok znachenij jentropii blokov dannyh. Telekommunikacii. 2018. № 7. S. 3-10 (In Russian).
- Bobrovskij V.V. Osobennosti korreljacionnoj obrabotki shumopodobnyh signalov v jelektrorazvedochnoj apparature. Geofizicheskie issledovanija. 2022. T. 23. № 2. S. 39-54. DOI: 10.21455/gr2022.2-3 (In Russian).
- Bychkov E.D., Veshkurcev Ju.M., Titov D.A. Pomehoustojchivost' modema v kanale s gaussovym okrashennym shumom pri prieme signala s raspredeleniem Tihonova. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2020. № 9. S. 40-46. DOI: 10.25791/pribor.09.2020.1208 (In Russian).
- Protsenko M.A., Pavelyeva E.A. Fractional Fourier Transform Phase for Image Matching. Proceedings of the International Conference on Computer Graphics and Vision “Graphicon”. 2022. № 32. P. 688-697.
- Monakov A.A. Vlijanie fazovyh oshibok na signal'nuju funkciju radiolokatora s sintezirovannoj aperturoj. V kn.: «Ustrojstva i metody obrabotki informacii»: Sb. dokladov Pervoj Vseross. nauch. konf. «Radiotehnicheskie, opti-cheskie i biotehnicheskie sistemy». SPb: GUAP. 2020. S. 72-76. DOI: 10.31799/978-5-8088-1451-6-2020-1-72-76 (In Russian).
- Dvornikov S.V., Bestugin A.R., Dvornikov S.S., Kirshina I.A. Izmerenie dlitel'nostej strobirujushhih impul'sov na osnove obrabotki ih chastotno-vremennyh raspredelenij plotnosti jenergii. Datchiki i sistemy. 2022. № 5(264). S. 5-11. DOI: 10.25728/datsys.2022.5.1
(In Russian). - Ivankin E.F. Svojstva signal'nyh funkcij sistem aposteriornoj obrabotki rezul'tatov nabljudenija. Informacija i bezopasnost'. 2008. T. 11. № 3. S. 387-394 (In Russian).
- Sabirov I.R., Shurup A.S. Issledovanie fazy funkcii vzaimnoj korreljacii shumovogo polja okeanicheskogo volnovoda. Izvestija RAN. Ser. Fizicheskaja. 2020. T. 84. № 1. S. 106-109. DOI: 10.31857/S0367676520010275 (In Russian).