350 rub
Journal Radioengineering №5 for 2023 г.
Article in number:
Directions for improving the characteristics of advanced antenna systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202305-19
UDC: 621.396
Authors:

M.L. Artemov1, O.V. Afanasev2, M.P. Slichenko3

1-3 JSC «Concern «Sozvezdie» (Voronezh, Russia)

Abstract:

The parameters of the antenna system have a significant impact on the technical appearance and limiting characteristics of radio equipment of various types and purposes. The currently widespread approach to the development of antenna systems, largely based on the use of classical types of antenna elements, in some cases limits the characteristics of radio equipment implemented in practice due to insufficient consideration of the results of the advanced development of radio electronics and the existing groundwork for expanding the capabilities of radio electronic components of equipment. Therefore, already at the present time and in the near future, an innovative scientific and technical reserve should be formed, based on scientifically based principles for creating new generation antenna elements and systems that meet the growing needs of radio engineering.

The paper analyzes the main directions and examples of improving the characteristics of promising antenna systems. Various particular examples demonstrate approaches to optimizing the structure and characteristics of various antennas, which are based on the idea of an antenna element as a complex distributed electrodynamic system. The given examples of improving the characteristics of advanced antenna systems illustrate some of the modern possibilities for effectively optimizing the characteristics of antenna elements, both single and as part of an antenna system.

As a result of a possible generalization of the presented results of antenna optimization and the approaches underlying such optimization, the following directions for improving the characteristics of promising antenna systems can be distinguished: the use of tools of modern automatic design systems for multi-parameter optimization and electrodynamic analysis of the characteristics of an antenna system; representation of the antenna element as a complex electrodynamic system with a large number of degrees of freedom and the subsequent implementation of methods for optimal interaction between the elements of the system according to the criterion of simultaneous provision of a wide range of requirements; application for the synthesis of the structure of antenna elements of the methods of differential geometry and topology, as well as the interdisciplinary methods of the theory of fractals, general systems theory, synergetics, etc.

Pages: 184-198
For citation

Artemov M.L., Afanasev O.V., Slichenko M.P. Directions for improving the characteristics of advanced antenna systems. Radiotekhnika. 2023. V. 86. № 5. P. 184−198. DOI: https://doi.org/10.18127/j00338486-202305-19 (In Russian)

References
  1. Artjomov M.L., Borisov V.I., Makovij V.A., Slichenko M.P. Avtomatizirovannye sistemy upravlenija, svjazi i radiojelektronnoj bor'by. Osnovy teorii i principy postroenija Pod red. M.L. Artjomova. M.: Radiotehnika. 2021. 556 s. (In Russian).
  2. Bahrah L.D., Benenson L.S., Zelkin E.G. i dr. Spravochnik po antennoj tehnike. T. 1 Pod red. Ja.N. Fel'da, E.G. Zelkina. M.: IPRZhR. 1997. 248 s. (In Russian).
  3. John L.V. Antenna Engineering Handbook. 4th Edition. New York. McGraw-Hill, Inc. 2007. 1775 p.
  4. Constantine A.B. Modern Antenna Handbook. New York. John Wiley & Sons, Inc. 2008. 1700 p.
  5. Kuma G., Ray K.P. Broadband Microstrip Antennas. Boston. Artech House. 2003. 432 p.
  6. Hansen R. C. Phased Array Antennas. New York. John Wiley & Sons, Inc. 2009. 571 p.
  7. Josefsson L., Persson P. Conformal Array Antenna Theory and Design. New York. IEEE Press. Wiley-Interscience. John Wiley & Sons, Inc. 2006. 488 p.
  8. Milligan T.A. Modern Antenna Design. 2nd Edition. New York. IEEE Press. Wiley-Interscience. John Wiley & Sons, Inc. 2005. 633 p.
  9. Schantz H.G. The Art and Science of Ultrawideband Antennas. 2nd Edition. Boston. Artech House. 2015. 591 p.
  10. Moosazadeh M. High-Gain Antipodal Vivaldi Antenna Surrounded by Dielectric for Wideband Applications. IEEE Transactions on Antennas and Propagation. 2018. V. 66. Is. 8. P. 4349-4352.
  11. Chen R.-S., et al. Novel Reconfigurable Full-Metal Cavity-Backed Slot Antennas Using Movable Metal Posts. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 10. P. 6154-6164.
  12. Mohamadzade B. et al. A Conformal, Dynamic Pattern-Reconfigurable Antenna Using Conductive Textile-Polymer Composite. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 10. P. 6175-6184.
  13. Zhang K., Jiang Z.H., Yue T., Zhang Y., Hong W., Werner D.H. A Compact Dual-Band Triple-Mode Antenna with Pattern and Polarization Diversities Enabled by Shielded Mushroom Structures. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 10. P. 6229-6243.
  14. Kremer H.I., Leung K.W., Lee M.W.K. Design of Substrate Integrated Dielectric Resonator Antenna with Dielectric Vias. IEEE Transactions on Antennas and Propagation. 2021. P. 5205-5214.
  15. Zhu J., et al. Additively Manufactured Millimeter-Wave Dual-Band Single-Polarization Shared Aperture Fresnel Zone Plate Metalens Antenna. IEEE Transactions on Antennas and Propagation. 2021. V. 69. №. 10. P. 6261-6272.
  16. Sun W., Li Y., Chang L., Li H., Qin X., Wang H. Dual-Band Dual-Polarized Microstrip Antenna Array Using Double-Layer Gridded Patches for 5G Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 10. P. 6489-6499.
  17. Amar A.S.I., Eid A.M., Salama A.A. High Gain Low Cost Vivaldi Antenna Design Using Double Slits and Triangle Metallic Strip for WiFi Applications. 15th International Computer Engineering Conference (ICENCO). Egypt. 2019. P. 234-238.
  18. He S.H, Shan W., Fan C., Chao Mo Z., Yang F.H., Chen J.H. An Improved Vivaldi Antenna for Vehicular Wireless Communication Systems. IEEE Antennas and Wireless Propagation Letters. 2014. V. 13. P. 1505-1508.
  19. Wang Y.-W., Wang G.-M., Zong B-F. Directivity Improvement of Vivaldi Antenna Using Double-Slot Structure Systems. IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 1308-1383.
  20. W. Liu, Z. N. Chen, X. Qing. Metamaterial-Based Low-Profile Broadband Aperture Coupled Grid-Slotted Patch Antenna. IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 7. P. 3325-3329.
  21. Holloway C.L., Kuester E.F., Gordon J.A., O’Hara J., Booth J., Smith D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas and Propagation Magazine. 2012. V. 54. № 2. P. 11-35.
  22. Gavrilov V.M. Vsenapravlennaja antenna dlja shirokopolosnyh sistem svjazi. Proektirovanie i tehnologija jelektronnyh sredstv. 2019. № 4. S. 31-37 (In Russian).
  23. Bezgin A.A., Savochkin A.A. Mnogoslojnaja pechatnaja antenna krugovoj poljarizacii. SVCh-tehnika i telekommunikacionnye tehnologii. 2020. № 1. Ch. 2. S. 170-171 (In Russian).
  24. Krivov Ju.N., Karabanov I.V. Nizkoprofil'naja dvuhpoljarizacionnaja sverhshirokopolosnaja antenna X-diapazona s jomkostnym pitaniem. Vestnik JaVVU PVO. 2021. № 1. S. 24-32 (In Russian).
  25. Patent №2507648 (RF), H01Q 9/28, H01Q 1/38. Gibridnaja shhelevaja antenna. Aziatcev V.E., Nefed'ev V.M., Chertkov D.V., Kirpichjov D.B. (In Russian).
  26. Patent №2593910 (RF), H01Q 1/38. Antenna Vival'di s pechatnoj linzoj na edinoj dijelektricheskoj podlozhke. Ashihmin A.V., Fedorov S.M., Negrobov V.V., Pasternak Ju.G., Avdjushin A.S. (In Russian).
  27. Patent №2400881 (RF), H01Q 13/00, H01Q 13/10. Planarnaja antenna. Orlov A.B., Orlov K.A., Krylov A.N., Bacula A.P., Volkov K.M., Vukolov A.Je. (In Russian).
  28. Katalog produkcii AO «SKARD-Jelektroniks». URL: http://skard.ru/product-categore/ant-sistem/ (data obrashhenija 12.11.2021)
    (In Russian).
  29. Neganov V.A., Matveev I.V. Novyj metod rascheta tonkogo jelektricheskogo vibratora. Izvestija vuzov. Ser. Radiofizika. 2000. T. XLIII. № 4. S. 335-344 (In Russian).
  30. Jeminov S.I. Teorija integral'nogo uravnenija tonkogo vibratora. Radiotehnika i jelektronika. 1993. T. 38. № 12. S. 2160 (In Russian).
  31. Weiland T. Time domain electromagnetic field computation with finite difference methods. International Journal of Numerical Modelling. 1996. V. 9. P. 295-319. (In Russian).
  32. Ljesdon L.S. Optimizacija bol'shih sistem: Per. s angl. M.: Nauka. 1976. 432 s. (In Russian).
  33. Klir Dzh. Sistemologija. Avtomatizacija reshenija sistemnyh zadach: Per. s angl. M.A. Zueva Pod red. A.I. Gorlina. M.: Radio i svjaz'. 1990. (In Russian).
  34. Vagin V.N. Dedukcija i obobshhenie v sistemah prinjatija reshenij. M.: Nauka. 1988. 384 s. (In Russian).
  35. Arnol'd V.I. Teorija katastrof. M.: Nauka. 1990. 128 s. (In Russian).
  36. Prigozhin I., Stengers I. Porjadok iz haosa: Novyj dialog cheloveka s prirodoj. M.: Editorial URSS. 2014. 304 c. (In Russian).
  37. Artemov M.L. Primenenie tehnologij iskusstvennogo intellekta v avtomatizirovannyh sistemah upravlenija i radiosvjazi. Sb. trudov XXVII Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». V 4-h tomah. Voronezh: Izdatel'skij dom VGU. 2021. S. 7-24 (In Russian).
Date of receipt: 28.02.2023
Approved after review: 03.03.2023
Accepted for publication: 30.03.2023