350 rub
Journal Radioengineering №4 for 2023 г.
Article in number:
Determining the arrival time and restoring the source pulsed optical radiation of lightning discharges in the space location system
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202304-11
UDC: 551.521
Authors:

L.S. Chudnovsky1, V.M. Ageev2, A.N. Pleshanov3

1-3 JSC “Precision Systems and Instruments” (Moscow, Russia)

Abstract:

Formulation of the problem. The task of detecting and determining the coordinates of lightning discharges is necessary to ensure the safety of aviation flights, meteorological forecasts, assess possible economic and social damage, and conduct scientific research. Monitoring of thunderstorm fronts over large areas is carried out on board spacecraft [1]. In most cases, spacecraft are located in geostationary orbits, which makes it possible to monitor a given region of the globe. The location of the coordinates of the lightning discharge in these orbits, as a rule, is carried out using optical matrices. Since the matrix polling frequency does not exceed hundreds of Hz, a detailed analysis of the optical radiation of a lightning discharge is difficult.

Target. Show the significance of registering an optical pulsed source using photodiodes with a clock frequency of units of MHz and perform high-quality digital processing, including inverse problems [2]. Carry out the notch of the source coordinates using the difference-range method. As an inverse problem, consider the original signal and trace distortions as a solution to an n-th order differential equation.

Results. A method for correctly solving the inverse problem by cutting off divergent solutions is proposed. It is shown that the error in determining the physical time of arrival of optical radiation that has passed an a priori unknown path makes it possible to detect optical radiation from 109 W, i.e. the overwhelming number of discharges [2].

Practical significance. The use of this method for analyzing the optical radiation of lightning discharges, for example, on board the low-orbit group "Sphere", will allow determining the coordinates of single lightning discharges with an error of 0.3-0.6 km with a total number of spacecraft of more than 64 pieces. with the possibility of restoring both the optical oscillogram of the radiation and the impulse response of the propagation path.

Pages: 88-97
For citation

Chudnovsky L.S., Ageev V.M., Pleshanov A.N. Determining the arrival time and restoring the source pulsed optical radiation of lightning discharges in the space location system. Radiotekhnika. 2023. V. 87. № 4. P. 88−97. DOI: https://doi.org/10.18127/j00338486-202304-11 (In Russian)

References
  1. Ullrich Finke Lightning observations from space; Time and space characteristics of optical events. FH Hannover 5th December 2007. 3rd MTG Workshop TU METSAT.
  2. Chudnovskij V.S., Chudnovskij L.S., Vagin Ju.P., Pleshanov A.N., Tjupikov K.Je. Global'naja registracija opticheskih izluchenij molnievyh razrjadov na bortu kosmicheskogo apparata. Jelektronnye volny i jelektronnye sistemy. 2021. T. 26. № 1. S. 5-11. DOI: https://doi.org/10.18127/j15604128-202101-01 (In Russian).
  3. Chudnovskij V.S., Chudnovskij L.S., Ageev V.M., Busygin V.P., Vagin Ju.P., Groznov I.V., Groznov A.V., Karhov A.N., Kolodochkin E.S., Mozgov K.S., Panov S.A., Puzanov Ju.V., Stal' N.L. Registracija izluchenij molnievyh razrjadov v raznostno-dal'nomernyh sistemah kosmicheskogo monitoringa. Jelektromagnitnye volny i jelektronnye sistemy. 2011. T. 16. № 3. S. 51-57 (In Russian).
  4. Ageev V.M., Pleshanov A.N., Poljakov V.T., Tjupikov K.Je., Chudnovskij A.L., Chudnovskij L.S. Nizkoorbital'nyj kosmicheskij registrator molnievyh razrjadov. Jelektromagnitnye volny i jelektronnye sistemy. 2018. T. 23. S. 64–67 (In Russian)
  5. Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka. 1986 (In Russian).
  6. Chudnovskij L.S., Ageev V.M. Metod opredelenija vremeni prihoda apriorno neizvestnyh impul'snyh signalov s maloj bazoj. Vestnik RAEN. 2011. № 1. S. 38–40 (In Russian).
  7. Chudnovsky A. The Gauge of Optical Pulse Radiation with an Additive Background Flare. AIS-2008 «ATMOSPHERE, IONO-SPHERE, SAFETY». Kaliningrad. July 7-12 2008. P. 205-206.
  8. Busygin V.P., Krasnokutskaja L.D., Kuz'mina I.Ju. Perenos opticheskogo izluchenija podoblachnyh molnij v kosmos. Izvestija RAN. Ser. Fizika atmosfery i okeana. 2019. T. 33. № 5. S. 85-93 (In Russian).
Date of receipt: 03.03.2023
Approved after review: 06.03.2023
Accepted for publication: 27.03.2023