350 rub
Journal Radioengineering №4 for 2023 г.
Article in number:
Transfer of laser pulses through crystal clouds
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202304-06
UDC: 535.2:621.373.826
Authors:

V.P. Busygin1, L.V. Dobrovolskaya2, I.Yu. Kuzmina3, A.N. Pleshanov4, A.A. Chubykin5

1-5 JSC “Precision Systems and Instruments” (Moscow, Russia)

Abstract:

Problem statement. A significant disadvantage of laser systems is the dependence of the effectiveness of their use on weather conditions, in particular, on the presence of clouds. However, in the works carried out at JSC «PSI», some facts of receiving laser pulses on board the spacecraft in cloudy conditions have been experimentally confirmed. The possibility of laser stations functioning in the presence of certain forms of layered clouds between the ground station and the spacecraft requires scientific confirmation.

The purpose of the work was to assess the possibility of the presence of certain types and forms of clouds in the firmament, allowing the reception and determination of the parameters of laser pulses during the operation of an unsolicited (no-demand) quantum optical system.

Solution methods. The solution is based on a local evaluation of the Monte Carlo method. Mathematical models of the atmosphere have been developed for a laser wavelength of 0.532 μm, including the optical characteristics of the crystalline environment for aggregate structures of ice particles. Calculations of the optical radiation transfer of subnanosecond laser pulses of ground stations to high-orbit and low-orbit spacecraft in the presence of clouds of upper and middle tiers are performed.

Results. It is shown that the principles of one-way laser ranging can be implemented in the presence of frontal cirrus, cirrostratus, and cirrocumulus clouds, as well as altostratus clouds in the sky with established limitations on optical thickness.

Practical significance. The results obtained allow us to talk about the possibility of increasing the technological performance of high-precision satellite rangefinder systems, as well as contribute to improving the efficiency of one-way laser location with an active response when solving other problems of space navigation and geodesy, since the repeatability of the considered cloud forms over the territory of the Russian Federation reaches 20 percent or more.

Pages: 36-51
For citation

Busygin V.P., Dobrovolskaya L.V., Kuzmina I.Yu., Pleshanov A.N., Chubykin A.A. Transfer of laser pulses through crystal clouds.
Radiotekhnika. 2023. V. 87. № 4. P. 36−41. DOI: https://doi.org/10.18127/j00338486-202304-06 (In Russian)

References
  1. Sadovnikov M.A., Sumerin V.V., Shargorodskij V.D. Odnostoronnjaja lazernaja dal'nometrija i ee primenenie v zadachah povyshenija tochnosti chastotno-vremennogo obespechenija GLONASS. International Technical Workshop WPLTN-2012. Sankt-Peterburg. Rossija. 2012 (In Russian).
  2. Zhabin A.S., Nabokin P.I. Metody dostizhenija subnanosekundnoj tochnosti izmerenij intervalov vremeni v bortovom terminale odnostoronnej lazernoj dal'nomernoj sistemy. Jelektromagnitnye volny i jelektronnye sistemy. 2013. T. 18. S. 39–42 (In Russian).
  3. Mak-Kartni. Je. Optika atmosfery. M.: Mir. 1979. 422 s. (In Russian).
  4. A preliminary cloudless standard atmosphere for radiation computation. World Climate Research Program (WSP). WSP-112, WMO/TD. 1986. № 24. 60 p.
  5. Kneizys F.X., Robertson D.S., Abreu L.W., Acharya P., Anderson G.P., Rothman L.S., Chetwynd J.H., Selby J.E.A., Shetle E.P., Gallery W.O., Berk A., Clough S.A., Bernstein L.S. The MODTRAN 2/3 report and LOWTRAN 7 model Phillips Laboratory. Geophysics Directorate. 1996. 260 p.
  6. Ansmann A., Tesche M., Groß S., Freudenthaler V., Seifert P., HiebschA., Schmidt J. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett. 2010.
    V. 37. P. 13810.
  7. Gérard B., Déuze J. L., Herman M., Kaufman Y. J., Lallart P., Oudard C., Remer, B. Roger L. A., Six B., Tanré D. Comparisons between POLDER 2 and MODIS/Terra aerosol retrievals over ocean. J. Geophys. Res. 2005. V. 110. P. 24211.
  8. Meeting of JSC experts on aerosols and climate. World Climate Research Program (WCP). 1981. 12 p.
  9. Hess M., Koepke P., Schult I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Article in Bulletin of the American Meteorological Society. 1998. V. 79. P. 831–844.
  10. Krekov G.M., Rahimov R.F. Opticheskie modeli atmosfernogo ajerozolja. Tomsk: Izd-vo SO AN SSSR. 1986. 294 s. (In Russian).
  11. Dejrmendzhan D. Rassejanie jelektromagnitnogo izluchenija sfericheskimi polidispersnymi chasticami. M.: Mir. 1971. 166 s. (In Russian).
  12. Zverev A.S. Sinopticheskaja meteorologija. L.: Gidrometeoizdat. 1977. 712 s. (In Russian).
  13. Oblaka i oblachnaja atmosfera. Spravochnik. Pod red. I.P. Mazina i A.H. Hrgiana. L.: Gidrometeoizdat. 1989. 648 s. (In Russian).
  14. Lazernyj kontrol' atmosfery. Pod red. Je.D. Hinkli. M.: Mir. 1979. 416 s. (In Russian).
  15. Volkovickij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskih oblakov. L.: Gidrometeoizdat. 1984. 200 s. (In Russian).
  16. Fejgel'son E.M. Luchistyj teploobmen i oblaka. L.: Gidrometeoizdat. 1970. 230 s. (In Russian).
  17. Rukovodstvo po priboram i metodam nabljudenij. VMO. 2018 (In Russian).
  18. Baum B.A., Kratz D.P., Yang P. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models. J. Geophys. 2000. V. 105. P. 11767–11780.
  19. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Okamoto H., Förstner J. Light scattering by ice crystals of cirrus clouds: from exact numerical methods to physical- optics approximation. J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 195. P. 132–140.
  20. Kravec L.V., Marinushkin V.N., Smirnov N.D. Issledovanie harakteristik peristoj oblachnosti nazemnym lidarom. V sb. «Radiacionnye svojstva peristyh oblakov». Pod red. E.M. Fejgel'son. M.: Nauka. 1989. 223 s. (In Russian).
  21. Yang P., Gao B.-C., Baum B.A., Wiscombe W., Hu Y., Nasiri S.L. Sensitivity of cirrus bidirectional reflectance in MODIS bands to vertical inhomogeneity of ice crystal habits and size distributions. J. Geophys. 2001. V. 106. P. 17267–17291.
  22. Platnick S., King M.D., Ackerman S., Menzel W.P., Baum B.A., Riedi J., et al. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003. V. 4. P. 459–473.
  23. Winker D.M., Couch R.H., McCormick M.P. An overview of LITE: NASA's Lidar­in­space Technology Experiment I. Proc. IEEE. 1996. V. 84. P. 164–180.
  24. Winker D.M., Pelon J., McCormick M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE. 2003. V. 4893. P. 1–11.
  25. Baran A. On the remote sensing and radiative properties of cirrus. All content following this page was uploaded by Anthony J. Baran on 17 May 2014. Р. 59–95.
  26. Yang P., Bi L, Baum B.A., Liou K.N., Kattawar G.W., Mishchenko M.I., Cole B. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 pm. J. Atmos. Sci. 2013. V. 70. P. 330–347.
  27. Baran, A., Havemann S. The dependence of retrieved cirrus ice-crystal effective dimension on assumed ice crystal geometry and size-distribution function at solar wavelengths. Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2153–2167.
  28. Baum B., Yang Р., Heymsfield A., Bansemer А., Cole В., Merrelli А., Schmitt С., Wang Chenxi. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm. Journal of Quantitative Spectroscopy & Radiative Transfer. 2014. V. 146. Р. 123–139.
  29. Petrushin A.G. Intensivnost' izluchenija, rassejannogo pod malymi uglami orientirovannymi ledjanymi kristallami. Izv. AN SSSR. Ser. Fizika atmosfery i okeana. 1987. T. 23. № 5. S. 546–548 (In Russian).
  30. Zhuravleva T.B. Imitacionnoe modelirovanie polej jarkosti solnechnoj radiacii v prisutstvii opticheski anizotropnoj kristallicheskoj oblachnosti: algoritm i rezul'taty testirovanija. Optika atmosfery i okeana. 2020. T. 33. № 12. P. 937–943 (In Russian).
  31. Tokarev I.A., Rybin I.A., Busygin V.P. i dr. Harakteristiki opticheskogo izluchenija bolidov v uslovijah oblachnosti. Inzhenernaja fizika. 2020. № 7. S. 3–15 (In Russian).
  32. Busygin V.P., Krasnokutskaja L.D., Kuz'mina I.Ju. Perenos opticheskogo izluchenija podoblachnyh molnij v kosmos. Izvestija RAN. Ser. Fizika atmosfery i okeana. 2019. T. 55. № 5. S. 85–93 (In Russian).
  33. Busygin V.P., Kovalevskaja O.I., Kuz'mina I.Ju., Chernenko A.E. Funkcii raspredelenija kojefficienta prozrachnosti atmosfery pri
    nabljudenii opticheskih impul'sov iz kosmosa. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2018. № 2. S. 11-17 (In Russian).
Date of receipt: 03.03.2023
Approved after review: 06.03.2023
Accepted for publication: 27.03.2023