350 rub
Journal Radioengineering №3 for 2023 г.
Article in number:
Heterostructure transistor for an energy-efficient low-noise radiothermograph amplifier based on monolithic integrated circuits
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202303-16
UDC: 621.382
Authors:

A.G. Gudkov1, V.G. Tikhomirov2, S.V. Chizhikov3

1,3 Bauman Moscow State Technical University (Moscow, Russia)

2 St. Petersburg State Electrotechnical University «LETI» (St. Petersburg, Russia)

Abstract:

Problem statement: the amplifying path of the radiothermograph consumes, with transistors available on the market, an unacceptably large amount of energy, which leads to an increase in heat generation and, as a result, to the introduction of additional errors in measurements.

Purpose: to develop a basic transistor for MIC amplifier with reduced power consumption in order to increase the reliability of the radiothermograph.

Results: the optimization of the transistor design made it possible to obtain a calculated characteristic of the steepness, clearly showing the increased amplifying properties of the proposed transistor in the low-current region, which directly leads to the possibility of a significant reduction in current consumption of the entire chip.

Practical significance: a significant increase in the steepness of the transfer characteristic of the proposed transistor design indicates the possibility of using this promising element base as part of microwave radiometers.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-19-00349-П in the theme: “A method and a multichannel multifrequency microwave radiothermography on the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body”.

Pages: 166-173
For citation

Gudkov A.G., Tikhomirov V.G., Chizhikov S.V. Heterostructure transistor for an energy-efficient low-noise radiothermograph amplifier based on monolithic integrated circuits. Radiotekhnika. 2023. V. 87. № 3. P. 166−173. DOI: https://doi.org/10.18127/j00338486-202303-16 (In Russian)

References
  1. Guljaev Ju.V., Leushin V.Ju., Gudkov A.G., Shhukin S.I., Vesnin S.G., Kublanov V.S., Porohov I.O., Sedankin M.K., Sidorov I.A. Pribory dlja diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotehnologii: razrabotka, primenenie. 2017. № 2. T. 9. S. 27-45 (In Russian).
  2. Vesnin S., Sedankin M., Leushin V., Skuratov V., Nelin I., Konovalova A. Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies. 2019. V. 4. № 5. Р. 6-15.
  3. Gudkov A.G., Vesnin S.G., Leushin V.Ju. i dr. Mikrominiatjurizacija mnogokanal'nyh mnogochastotnyh radiotermografov. Medicinskaja tehnika. 2022. № 4. S. 4-7. (In Russian).
  4. Gudkov A.G., Leushin V.Y., Vesnin S.G., et al. Studies of a Microwave Radiometer Based on Integrated Circuits. Biomed. Eng. 2020. V. 53. Р. 413–416.
  5. Aleksandrov R.Ju. Monolitnye integral'nye shemy SVCh: vzgljad iznutri. Komponenty i tehnologii. 2006. № 9. S. 174-182. (In Russian).
  6. Shahnovich I. Tverdotel'nye SVCh-pribory i tehnologii. Nevospetye geroi besprovodnoj revoljucii. Jelektronika. 2005. № 4. S. 12-19 (In Russian).
  7. Chizhikov S.V., Tihomirov V.G., Gudkov G.A. Issledovanie vlijanija topologii bazovogo tranzistora na staticheskie harakteristiki s cel'ju opredelenija optimal'noj konstrukcii tranzistora v sostave MIS dlja mikrovolnovoj radiotermometrii. Nanotehnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 4. S. 46–52 (In Russian).
  8. Chizhikov S.V., Solov'jov Ju.V. Jelementnaja baza MIS SVCh dlja mikrovolnovoj radiotermometrii. Nanotehnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 2. S. 48-57 (In Russian).
  9. Gromov D.V., Krasnjuk A.A. Materialovedenie dlja mikro i nanojelektroniki: Ucheb. posobie. M.: MIFI. 2008. 156 s. (In Russian).
  10. Shur M. Sovremennye pribory na osnove arsenida gallija: Per. s angl. M.: Mir. 1991. 632. 96 s. (In Russian).
  11. Bojko K.V., Nojkin Ju.M., Nojkina T.K. Tostoluckij S.I. Tverdotel'naja jelektronika SVCh: Ucheb.-metodich. posobie. Rostov-na-Donu: JuFU. 2008. Ch. 12. S. 35 (In Russian).
  12. Abgarjan K.K., Reviznikov D.L. Chislennye metody v modelirovanii jelektronnyh svojstv nanorazmernyh geterostruktur: Ucheb. posobie. MAI. 2017. 109 s. (In Russian).
  13. Sentaurus™ Device User Guide. Version K-2015.06. 1494 р.
  14. Nandha Kumar Subramani. Physics-based TCAD device simulations and measurements of GaN HEMT technology for RF power amplifier applications. 2017. 321 р.
  15. Tikhomirov V.G., Gudkov A.G., Agasieva S.V., Dynaiev D. D., Popov M.K., Chizhikov S.V. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation. Journal of Physics Conference Series. 2019. 1410:012191.
Date of receipt: 11.01.2023
Approved after review: 18.01.2023
Accepted for publication: 28.02.2023