350 rub
Journal Radioengineering №3 for 2023 г.
Article in number:
Methods of high-speed synchronization in PLL systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202303-08
UDC: 621.376.4
Authors:

V.E. Martirosov1, G.A. Alekseev2

1 Moscow Aviation Institute (National Research University) (Moscow, Russia)

2 Bureau 1440 LLC (Moscow, Russia)

Abstract:

An analytical review of methods of high-speed synchronization of devices based on phase-lock loop (PLL) systems is presented. Such classes of methods as nonlinear control, additional frequency discrimination, frequency search of the input signal, PLL loops with variable parameters are considered. The results of a speed study for two of the fastest structures of synchronization systems are presented: charge-pump phase-lock loop (CPPLL) and globally linearized synchronization system (GLSS). The results of comparison with the traditional PLL structure, as well as with the frequency search method (search PLL) are presented. In the course of simulation modeling in MATLAB/Simulink, time plots of signals in the studied synchronization systems for various values of the relative initial frequency detuning were obtained. The dependence of the frequency synchronization time on the magnitude of the initial frequency upsets obtained from the simulation results is presented. For the PLL search method (SPLL), an analytical dependence is shown, taking into account the maximum permissible search speed of frequency tuning. The results obtained show the advantage of GLSS in performance compared to CPPLL, which, with frequency detuning significantly exceeding the loop gain coefficient of the system, can reach an order or more. The undoubted advantage of the GLSS system is the obvious possibility of its implementation in a microchip design for use directly in the microwave frequency range. The presence of a family of synchronous signal generation and reception structures based on minor variations in the basic GLSS structure creates prerequisites for the use of such high-speed devices in promising radio engineering systems and complexes. The results of the work can be used in the development of high-speed modern digital systems of information transfer (DSIT).

Pages: 83-91
For citation

Martirosov V.E., Alekseev G.A. Methods of high-speed synchronization in PLL systems. Radiotekhnika. 2023. V. 87. № 3. P. 83−91. DOI: https://doi.org/10.18127/j00338486-202303-08 (In Russian)

References
  1. Martirosov V.E. Optimal'nyj priem diskretnyh signalov CSPI. M.: Radiotehnika. 2010. 208 s. (In Russian).
  2. Martirosov V.E. Statisticheskij sintez optimal'nyh algoritmov formirovanija vysokostabil'nyh modulirovannyh kolebanij. Jelektrosvjaz'. 1995. № 10. S. 33-36 (In Russian).
  3. Gardner F.M. Phaselock Techniques. 3rd ed. New York: John Wiley & Sons. 2005. 443 p.
  4. Martirosov V.E., Alekseev G.A. Synchronous Methods of BPSK Signal Generation. Conference “2020 Systems of Signals Generating and Processing in the Field of on Board Communications”. Moscow, Russia. 2020, DOI: 10.1109/IEEECONF48371.2020.9078562.
  5. Kirasamuthranon L., Wardkein P., J. Koseeyaporn J. Narrow bandwidth PLL based multiplier phase detector for PSK modulator. 2020 5th International Conference on Computer and Communication Systems. 2020. Р. 594-598. DOI: 10.1109/ICCCS49078.2020.9118523.
  6. Martirosov V.E. Optimal'nye algoritmy priema diskretnyh signalov. Radiotehnika i jelektronika AN SSSR. 1985. № 5. S. 981-986 (In Russian).
  7. Martirosov V.E. Statisticheskij sintez algoritmov priema mnogokomponentnyh diskretnyh signalov. Izvestija vuzov SSSR. Ser. Radiojelektronika. 1990. № 7. S. 3-8 (In Russian).
  8. Meyer H., Asheid G. Synchronization in Digital Communications. V.1. New York: John Wiley & Sons. 1990.
  9. Stephens D.R. Phase-locked loops for wireless communications - digital, analog and optical implementations. 2nd ed. New York: Kluwer Academic Publishers. 2002. 422 p.
  10. Egan W.F. Advanced Frequency Synthesis by Phase Lock. 2nd ed. New York: John Wiley & Sons. 2011. 442 p.
  11. Kroupa V.F. Phase Lock Loops and Frequency Synthesis. New York: John Wiley & Sons. 2003. 321 p.
  12. Martirosov V.E., Alekseev G.A. Strukturnyj sintez sistemy sinhronizacii s vysokimi dinamicheskimi harakteristikami. Radiotehnika i jelektronika. 2019. T. 64. № 2. S. 1-5. DOI: 10.1134/S0033849419020153 (In Russian).
  13. Shahgil'djan V.V., Ljahovkin A.A. Sistemy fazovoj avtopodstrojki chastoty. M.: Svjaz'. 1972. 447 s. (In Russian).
  14. Belyh V.N., Shalfeev V.D. Chastotno-fazovaja avtopodstrojka chastoty s nelinejnym fil'trom v fazovoj cepi upravlenija. Izvestija vuzov. Ser. Radiofizika. 1968. T. 11. № 11. S. 1756-1759 (In Russian).  
  15. Hiroshige K. A simple technique for improving the pull-in capability of phase locked loops. IEEE Transactions on Space Electronics and Telemetry. March 1965. V. SET-11. № 1. Р. 40-46. DOI: 10.1109/TSET.1965.5009635.
  16. Vlasov V.A. Issledovanie poiskovyh sistem fazovoj sinhronizacii avtogeneratorov: Avtoref. diss. … kand. teh. nauk: 05.00.00. M.: Rossijskaja gosudarstvennaja biblioteka (RGB). 1968. 201 s. (In Russian).
  17. Talbot D.B. Frequency acquisition techniques for phase locked loops. New York: John Wiley & Sons. 2012. 212 p.
  18. Gardner F.M. Charge-pump phase-lock loops. IEEE Transactions on Communications. November 1980. V. COM-28. № 11. Р. 1847-1858.
  19. Martirosov V.E. Optimal'nye algoritmy priema signalov kvadraturnoj amplitudnoj manipulyacii. Radiotehnika. 2004. № 11. S. 41-48 (In Russian).
  20. Martirosov V.E. Influence of nonlinear (compression) distortions on the noise immunity of signals QAM reception. Radiotehnika. 2008. № 9. S. 4-11 (In Russian).
  21. Alekseev G.A., Martirosov V.E. Dynamic Characteristic of the BPSK-GLSS Demodulator. Conference “2021 Systems of signals generating and processing in the field of on board communications”. Moscow, Russia. 2021. DOI: 10.1109/IEEECONF51389.2021.9416110.
Date of receipt: 10.01.2023
Approved after review: 17.01.2023
Accepted for publication: 28.02.2023