350 rub
Journal Radioengineering №2 for 2023 г.
Article in number:
To the question of signal recovery stability in radar measurements
Type of article: scientific article
DOI: 10.18127//j15604128-202005-06
UDC: 621.396
Authors:

S.S. Semchenkov1, I.L. Zhbanov2, A.V. Abramenkov3, A.N. Kovalenkov4, M.S. Makarov5, E.A. Pechenev6

1-6 Vasilevsky Military Academy of Air Defense Forces RF (Smolensk, Russian)

Abstract:

Signal recovery is an important task in radio engineering systems. The tightening of requirements for the quality of the extracted information, its completeness has led to the fact that this problem has become relevant for radar measurements. However, previously, recovery issues were considered only in very narrow and specific areas of radar. The main reason for this is the low stability of the estimates obtained. Therefore, the search and substantiation of approaches to ensure the stability of the solution to the problem of signal recovery in a modern radar meter is an urgent scientific and practical problem.

In signal reconstruction, there are two separate directions, the first - methods based on the development of the maximum likelihood method, which have not become widespread due to the high required computational costs. Second - methods based on the development of the theory of inverse filtering.

The classic inverse filtering approach to signal reconstruction requires a significant signal-to-noise ratio (30 dB or more). The article shows in general terms how it is possible to reduce the requirements for ensuring such a high signal-to-noise ratio by synthesizing signals with special spectral properties.

For those cases when the signal modulation is limited and does not provide sufficient stability of signal reconstruction, three most typical methods of its provision are considered through the use of limiting and regularization. The main properties of these methods, advantages and disadvantages are shown. The physical principles of their work are described. Comparative characteristics of the power loss factor, the probability of detecting the response of the meter to the signal, the level of side lobes and the length of the response are obtained. The directions of further development of these methods are proposed.

Pages: 105-122
For citation

Semchenkov S.M., Zhbanov I.L., Abramenkov A.V., Kovalenkov A.N., Makarov M.S., Pechenev E.A. To the question of signal recovery stability in radar measurements. Electromagnetic waves and electronic systems. 2020. V. 251. № 5. P. 50−66.
DOI: 10.18127/j15604128-202005-06. (in Russian)

References
  1. Vasilenko G.I. Teoriya vosstanovleniya signalov. M.: Sovetskoe radio. 1979. 272 s. (in Russian)
  2. Podpoverkhnostnaya radiolokatsiya. Pod red. M.I. Finkelshteina. M.: Radio i svyaz. 1994. 216 s. (in Russian)
  3. Vainshtein L.A., Zubakov V.D. Vydelenie signalov na fone sluchainykh pomekh. M.: Sovetskoe radio. 1960. 447 s. (in Russian)
  4. Varyukhin V.A. Osnovy teorii mnogokanalnogo analiza. Kiev: Naukova dumka. 2015. 168 s. (in Russian)
  5. Falkovich S.E., Ponomarev V.I., Shkvarko Yu.V. Optimalnyi priem prostranstvenno-vremennykh signalov v radiokanalakh s rasseyaniem. M.: Radio i svyaz. 1989. 296 s. (in Russian)
  6. Chizhov A.A. Sverkhreleevskoe razreshenie. T. 2. Preodolenie faktora nekorrektnosti obratnoi zadachi rasseyaniya i proektsionnaya radiolokatsiya. M.: KRASAND. 2010. 104 s. (in Russian)
  7. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury. 1979. 285 s. (in Russian)
  8. Abramenkov A.V., Semchenkov S.M., Malykhin D.A. Obosnovanie pokazatelya i kriteriya sinteza shumopodobnykh shirokopolosnykh signalov dlya inversnogo filtra. Vestnik Yaroslavskogo vysshego voennogo uchilishcha protivovozdushnoi oborony. Yaroslavl: YaVVU PVO. 2019. S. 10−21. (in Russian)
  9. Rautinian S.G. Realnye spektralnye pribory. UFN. 1958. T. 66. № 3. S. 475−517. (in Russian)
  10. Khafizov R.G., Kazarinov A.V. Optimizatsiya korrektsii kriticheskikh komponent spektra impulsnogo signala dlya obespecheniya ustoichivosti inversnoi filtratsii. Radiotekhnicheskie i telekommunikatsionnye sistemy. 2020. № 2. S. 24−32. (in Russian)
  11. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. M.: Nauka. 1973. 849 s. (in Russian)
  12. Abramenkov A.V., Semchenkov S.M. Obosnovanie vozmozhnosti povysheniya razreshayushchei sposobnosti i skrytnosti raboty radiolokatsionnoi stantsii za schet sinteza i inversnoi filtratsii shumopodobnykh shirokopolosnykh signalov. Materialy nauchnykh seminarov Yaroslavskogo vysshego voennogo uchilishcha protivovozdushnoi oborony. Yaroslavl: YaVVU PVO. 2018. S. 3−15. (in Russian)
  13. Semchenkov S.M., Abramenkov A.V., Pechenev E.A. Povyshenie razreshayushchei sposobnosti radiolokatora po dalnosti za schet inversnoi filtratsii. Zhurnal SFU. Ser. «Tekhnika i tekhnologiya» (Krasnoyarsk). № 11. 2018. 310 s. (in Russian)
  14. Vasilenko G.I., Taratorin A.M. Vosstanovlenie izobrazhenii. M.: Radio i svyaz. 1986. 304 s. (in Russian)
  15. Semchenkov S.M., Abramenkov V.V., Vasilchenko O.V. Inversnaya filtratsiya impulsnykh signalov. Elektromagnitnye volny i elektronnye sistemy. 2017. № 4. S. 42−53. (in Russian)
  16. Semchenkov S.M., Pechenev E.A. Sposob povysheniya razreshayushchei sposobnosti za schet inversnoi filtratsii impulsnykh signalov. Radiopromyshlennost. 2017. № 3. S. 103−109. (in Russian)
  17. Zhang Yo. et al. Super-resolution surface mapping for scanning radar: inverse filtering based on the fast iterative adaptive approach. 11 IEEE transactions on geoscience and remote sensing. 2018. V. 56. № 1. P. 127−144. DOI: 10.1109/TGRS.2017.2743263. (in Russian)
  18. Abramenkov V.V., Semchenkov S.M., Abramenkov A.V. Obrabotka radiosignala metodami inversnoi filtratsii. XXI Mezhdunar. nauchno-tekhnich. konf. «Radiolokatsiya, navigatsiya, svyaz». Voronezh. NPF «Sakvoee» OOO. T. 1. Sektsiya 3. S. 24−32. (in Russian)
  19. Khafizov R.G. Obespechenie razreshennogo obraza pri inversnoi filtratsii signalov v usloviyakh neopredelennosti. Tsifrovaya obrabotka signalov. 2020. № 1. S. 53−56. (in Russian)
Date of receipt: 10.08.2020
Approved after review: 31.08.2020
Accepted for publication: 11.09.2020