350 rub
Journal Radioengineering №2 for 2023 г.
Article in number:
Synthesis method for the tracking algorithm using a shaping filter and quasi-optimal control laws for maneuvering objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202302-13
UDC: 62-50+06
Authors:

D.S. Andrashitov1, A.A. Kostoglotov2, S.V. Lazarenko3, A.S. Penkov4

1 Military Academy of Strategic Missile Forces named after Peter the Great Ministry of Defense
  of the Russian Federation (Balashikha, Moscow Region, Russia)

2–4 Don State Technical University (Rostov-on-Don, Russia)

Abstract:

Relevance. The work is devoted to the actual problem of inconsistency of the motion model when tracking maneuvering objects under a priori unknown influences that cause dynamic errors. To ensure target tracking by modern radars, a linear Kalman filter is traditionally used based on a kinematic motion model, the imperfection of which is the cause of tracking failure during active target maneuvering.

Purpose of the work. Develop a method for the synthesis of algorithms using adaptive motion models with the construction of a quasi-optimal control law based on the maximum condition for the generalized power function and the decomposition principle.

Results. The paper shows that the use of the decomposition principle and the condition for the maximum of the generalized power function determines the structure of the linear model. A Kalman-type filter is considered, which differs in the structure of transition matrices, which include an additional adaptation parameter, which makes it possible to obtain more reliable estimates of the trajectory of the aircraft under a priori unknown influences under the conditions of maneuvering of the tracking object. Numerical simulation of the algorithm based on the adaptive motion model using a shaping filter has been carried out.

Practical significance. The application of the considered method of synthesis of tracking algorithms using a shaping filter and quasi-optimal control laws for maneuvering objects makes it possible to increase the accuracy of determining the target trajectory by an average of 4% relative to the Kalman filter with the Singer model, and in some cases up to 25% in the maneuver interval.

Pages: 93-104
For citation

Andrashitov D.S., Kostoglotov A.A., Lazarenko S.V., Penkov A.S. Synthesis method for the tracking algorithm using a shaping filter and quasi-optimal control laws for maneuvering objects. Radiotekhnika. 2023. V. 87. № 2. P. 93−104. DOI: https://doi.org/10.18127/j00338486-202302-13 (In Russian)

References
  1. Kostoglotov A.A., Kuznecov A.A., Lazarenko S.V., Losev V.A. Sintez fil'tra soprovozhdeniya so strukturnoj adaptaciej na osnove ob"edinennogo principa maksimuma. Informacionno-upravlyayushchie sistemy. 2015. № 4 (77). S. 2–9 (In Russian).
  2. Kostoglotov A.A., Kuznecov A.A., Lazarenko S.V., Deryabkin I.V. Metod strukturnoj adaptacii diskretnyh algoritmov ob"edinennogo principa maksimuma v zadachah ocenki parametrov dvizheniya. Informacionno-upravlyayushchie sistemy. 2016. № 6 (85). S. 10–15 (In Russian).
  3. Kostoglotov A.A., Kostoglotov A.I., Lazarenko S.V., Cennyh B.M. Metod ocenki parametrov dvizheniya upravlyaemogo letatel'nogo apparata na osnove ob"edinennogo principa maksimuma s postroeniem opornoj traektorii. Uspekhi sovremennoj radioelektroniki. 2012. № 6. S. 61–66 (In Russian).
  4. Bar-Shalom Y., Li X.R. Estimation with applications to tracking and navigation. John Wiley & Sons, 2001. 580 p.
  5. Bar-Shalom Y., Li X.-R. Estimation and tracking: Principles, techniques, and software [Reviews and abstracts]. IEEE Antennas propag. mag. 1996. V. 38. № 1. P. 62.
  6. Farina A., Studer F.A. Radar data processing. Volume I: Introduction and tracking. Research studies press ltd., 1985. 325 p.
  7. Li X., Jilkov V. Survey of maneuvering target tracking. Part I: Dynamic models. Aerosp. electron. syst. IEEE Trans. On. 2003. V. 39.
    P. 1333–1364.
  8. Shevcov O.Yu., Zenov B.V., Romanovskij A.S., Struchalin V.P., Volkov A.V. Adaptivnaya nastrojka fil'tra Kalmana dlya soprovozhdeniya manevriruyushchej celi v usloviyah nalichiya pomekh. Vestnik yaroslavskogo vysshego voennogo uchilishcha protivovozdushnoj Oborony. 2021. № 2 (13). S. 34–41 (In Russian).
  9. Lur'e A.I. Analiticheskaya mekhanika. M.: GIFML, 1961. 824 s. (In Russian).
  10. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Strukturno-parametricheskij sintez fil'tra soprovozhdeniya na baze dekompozicii po celevomu funkcionalu s adaptaciej k vozmushcheniyam traektorii. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2021. T. 19. № 2. S. 14–25 (In Russian).
  11. Kostoglotov A.A., Kuznecov A.A., Lazarenko S.V. Sintez modeli processa s nestacionarnymi vozmushcheniyami na osnove maksimuma funkcii obobshchennoj moshchnosti. Matematicheskoe modelirovanie. 2016. T. 28. № 12. S. 133–142. DOI: https://doi.org/10.18127/j20700814-202102-02 (In Russian).
  12. Sejdzh E.P., Melsa Dzh.L. Identifikaciya sistem upravleniya. M.: Nauka. 1974. 248 s. (In Russian).
  13. Kostoglotov A.A., Lazarenko S.V. Metod kvazioptimal'nogo sinteza zakonov upravleniya na osnove redukcii zadachi Lagranzha k izoperimetricheskoj zadache s ispol'zovaniem asinhronnogo var'irovaniya. Izv. rossijskoj akademii nauk teoriya i sistemy upravleniya. 2021. № 6. S. 3–12 (In Russian).
  14. Ahiezer N.I. Lekcii po variacionnomu ischisleniyu. M.: GITTL. 1955. 248 s. (In Russian).
  15. Chernous'ko F.L., Anan'evskij I.M., Reshmin S.A. Metody upravleniya nelinejnymi mekhanicheskimi sistemami. M.: Fizmatlit. 2006. 328 s. (In Russian).
  16. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Metod sinteza adaptivnyh algoritmov ocenki parametrov dinamicheskih sistem na osnove principa dekompozicii i metodologii ob"edinennogo principa maksimuma: 4 (208). Izv. vuzov. Severo-Kavkazskij region. Ser. Estestvennye nauki. 2020. № 4 (208). S. 22–28 (In Russian).
  17. Pyatnickij E.S. Princip dekompozicii v upravlenii mekhanicheskimi sistemam. Dokl. AN SSSR. 1988. T. 300. № 2. S. 345–346 (In Russian).
  18. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Strukturno-parametricheskij sintez adaptivnogo fil'tra ocenki sostoyaniya dinamicheskih sistem s ispol'zovaniem principa dekompozicii. Vestnik rostovskogo gosudarstvennogo universiteta putej soobshcheniya. 2020. № 4 (80). S. 180–188 (In Russian).
  19. Kostoglotov A. et al. Analysis of the possibility of intellectualization of algorithms for estimating the parameters of dynamic systems based on adaptive model of motion. Lecture notes in networks and systems. 2021. V. 330. P. 589–600.
  20. Kostoglotov A., Penkov A., Lazarenko S. Quasi-optimal synthesis of an adaptive filter in the problem of estimating the state of dynamic systems. EDP Sciences. 2020. P. 01002.
  21. Pyatnickij E.S. Sintez ierarhicheskih sistem upravleniya mekhanicheskimi i elektromekhanicheskimi ob"ektami na principe dekompozicii. Avtomatika i telemekhanika. 1989. T. 50. № 1. S. 87–99 (In Russian).
  22. Zinger R.A. Ocenka harakteristik optimal'nogo fil'tra dlya slezheniya za pilotiruemoj cel'yu. S. 40–57 (In Russian).
  23. Matveev V.V. Osnovy postroeniya besplatformennyh inercial'nyh navigacionnyh sistem. OAO “Koncern “CNII “Elektropribor”. 2009. 280 s. (In Russian).
Date of receipt: 29.11.2022
Approved after review: 09.12.2022
Accepted for publication: 27.01.2023