350 rub
Journal Radioengineering №12 for 2023 г.
Article in number:
Method and adaptive algorithms for narrowband interferences mitigation and automatic signal detection in the problem of sensor diagnosis of multiple HF radio channels
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202312-17
UDC: 621.39
Authors:

D.V. Ivanov1, V.A. Ivanov2, A.A. Elsukov3, N.V. Ryabova4, V.V. Ovchinnikov5, N.R. Isaev6

1-5 Volga State University of Technology (Yoshkar-Ola, Russia)

6 Scientific and Educational Center for Aerospace Defense “Almaz - Antey” n.a. Academician V.P. Efremov (Moscow, Russia)

1 IvanovDV@volgatech.net; 2 IvanovVA@volgatech.net; 3 ElsukovAA@volgatech.net; 4 RyabovaNV@volgatech.net; 5 OvchinnikovVV@volgatech.net; 6 inekitr9711@gmail.com

Abstract:

Ionospheric HF radio channel is a frequency-ordered set of multiple narrowband channels i.e. multi-channel. At any instant of time some of them are unavailable due to the adverse wave propagation conditions and the high interference level. Narrowband interferences and fluctuating noise have a negative impact on different radio-technical systems operating in the HF range. In this regard optimal signal reception requires their filtering. Moreover, automatic signal detection algorithms should be developed to improve performance of a system for diagnosing and estimating structural functions of ionospheric radio channels. Typically, removing interferences is carried out after signal demodulation. However, filtering prior to demodulation has several advantages especially for spread spectrum signals. For this reason, paper presents the findings of the research into advanced filtration algorithms of time-varying interferences (fluctuating and narrowband) that allow to increase processing gain of spread spectrum signals by means of software-defined radio (SDR) technology and “ADC to antenna” principle. It was shown that this algorithms effectively suppresses time-varying narrowband interferences even with a level exceeding 40 dB. However, due to the selected averaging period (10 s), resulting spectrum may contain residual interference components, not exceeding 10-15 dB. In addition to this, we studied Constant False Alarm Rate (CFAR) algorithms to improve automatic signal detection procedure when echoes are highly spread over delays. There are presented the results of full-scale experiments on verification of a complex adaptive algorithm for automatic interference filtration and sensor signal detection. Sounding was carried out over the Cyprus – Yoshkar-Ola propagation path. Findings showed that application of proposed algorithm yields images of the structural functions of multiple HF communication channels and the ionosphere, that are appropriate for automatic processing, because they contain information only on the echo. This allows automatically estimate the frequency dependences of the SNR and the scattering parameters, due to the improved quality of sensor data.

Applying SDR technology and “ADC to antenna” principle opens new perspectives for improving algorithms of digital processing of sounding signals. The presented results have a positive effect on the efficiency of long-haul communications using a variable propagation environment, contaminated with a variety of signals from various radio equipment that create mutual man-made interference.

Pages: 158-170
For citation

Ivanov D.V., Ivanov V.A., Elsukov A.A., Ryabova N.V., Ovchinnikov V.V., Isaev N.R. Method and adaptive algorithms for narrowband interferences mitigation and automatic signal detection in the problem of sensor diagnosis of multiple HF radio channels. Radiotekhnika. 2023. V. 87. № 12. P. 158−170. DOI: https://doi.org/10.18127/j00338486-202312-17 (In Russian)

References
  1. Watterson C., Juroshek J., Bensema W. Experimental Confirmation of an HF Channel Model. IEEE Transactions on Communication Technology. 1970. V. 18. № 6. P. 792–803. DOI: https://doi.org/10.1109/TCOM.1970.1090438.
  2. Ivanov V.A., Ryabova N.V., Belgibaev R.R., Chernov A.A. Efficiency of HF Communication Modems Operating Over a Mid-latitude Long-Range Propagation Path. 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2018. P. 1–5. DOI: https://doi.org/10.1109/SYNCHROINFO.2018.8457021.
  3. Ivanov D.V., Ivanov V.A., Ryabova N.V., Elsukov A.A., Ryabova M.I., Chernov A.A. Software-defined radio technology in the problem concerning with the successive sounding of HF ionospheric communication channels. Journal of Communications Technology and Electronics. 2016. V. 61(7). P. 767–775. DOI: https://doi.org/10.1134/S1064226916070068.
  4. Ivanov V.A., Ivanov D.V., Elsukov A.A., Ovchinnikov V.V., Ryabova N.V., Ryabova M.I. BPSK signal shaping and processing for digital SDR ionosonde. 2018 Systems of Signals Generating and Processing in the Field of on Board Communications. 2018. P. 1–5. DOI: https://doi.org/10.1109/SOSG.2018.8350595.
  5. Ivanov D.V., Ivanov V.A., Rjabova N.V., Ovchinnikov V.V. Novye vozmozhnosti sistem shirokopolosnoj kognitivnoj svjazi, rabotajushhih v ionosfernyh KV-radiokanalah s vnutrimodovoj dispersiej. Radiotehnika. 2022. T. 86. № 11. S. 162−177. DOI: https://doi.org/10.18127/j00338486-202211-23 (in Russian).
  6. Ivanov D.V., Ivanov V.A., Ryabova N.V., Ryabova M.I., Chernov A.A., Ovchinnikov V.V. Studying the parameters of frequency dispersion for radio links of different length using SDR based sounding system. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). 2017. P. 1–3. DOI: https://doi.org/10.23919/URSIGASS.2017.8105045.
  7. Reinisch B.W., Galkin I.A., Khmyrov G.M., Kozlov A.V., Bibl K., Lisysyan I.A., et al. New digisonde for research and monitoring applications. Radio Science. 2009. V. 44. Issue 1. RS0A24. DOI: https://doi.org/10.1029/2008RS004115.
  8. Ivanov V.A., Ivanov D.V., Ryabova N.V., Ryabova M.I., Chernov A.A., Ovchinnikov V.V. Studying the parameters of frequency dispersion for radio links of different length using software-defined radio based sounding system. Radio Science. 2019. V. 53. Issue 1. P. 34–43. DOI: https://doi.org/10.1029/2018RS006636.
  9. Ovchinnikov V.V., Ryabova N.V., Elsukov A.A. Adaptive HF Signal Detection Algorithm CFAR and Its Verification by Means of SDR Based Digital Ionosonde with USRP Platform. 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2018. P. 1–5. DOI: https://doi.org/10.1109/SYNCHROINFO.2018.8456970.
  10. Huang S., Zhao Z., Yang G., Chen G., Li T., Li N., Yang J. A new design of low-power portable digital ionosonde. Advances in Space Research. 2013. V. 51. Issue 3. P. 388–394, https://doi.org/10.1016/j.asr.2012.09.005.
  11. Rohling H. Ordered statistic CFAR technique - an overview. 12th International Radar Symposium (IRS). 2011. P. 631-638.
  12. Recommendation ITU–R F.1487 (2000). Testing of HF modems with bandwidths of up to about 12 kHz using ionospheric channel simulators. International Telecommunications Union, Geneva, Switzerland.
  13. Ivanov D.V. Metody i matematicheskie modeli issledovanija rasprostranenija v ionosfere slozhnyh dekametrovyh signalov i korrekcii ih dispersionnyh iskazhenij: Monografija. Joshkar-Ola: MarGTU. 2006. 266 s.  (in Russian).
  14. Ivanov V.A., Ivanov D.V., Ryabova N.V., Ryabova M.I., Chernov A.A., Elsukov A.A. Computer filtering of images of ionograms of HF ionospheric radio communication paths and an algorithm for determining signal‐to‐noise ratio. Journal of Applied Engineering Science. 2018. V. 16(1), 509. P. 116–124. DOI: https://doi.org/10.5937/jaes16‐11790.
  15. Dhar S., Perry B.D. Equalized Megahertz-Bandwidth HF Channels for Spread Spectrum Communications. MILCOM 1982 – IEEE Military Communications Conference - Progress in Spread Spectrum Communications. 1982. P. 29.5-1–29.5-5. DOI: https://doi.org/10.1109/MILCOM.1982.4805973.
  16. Ivanov D.V., Ivanov V.A., Elsukov A.A., Ryabova N.V., Ovchinnikov V.V., Ryabova M.I. Algorithms of adaptive narrow-band interferences suppression and automatic signal detection for swept-frequency sounding of multiple HF radio channels. URSI AP-RASC 2019. 2019. P. 1–4.
  17. Finn H.M., Johnson R.S. Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates. RCA Rev. V. 29. № 3. P. 414–464.
  18. Hansen V.G., Sawyers J.H. Detectability Loss Due to "Greatest of" Selection in a Cell-Averaging CFAR. IEEE Transactions on Aerospace and Electronic Systems. 1980. V. AES-16. № 1. P. 115-118. DOI: https://doi.org/10.1109/TAES.1980.308885.
  19. Weiss M. Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations. IEEE Transactions on Aerospace and Electronic Systems. 1982. V. AES-18. № 1. P. 102-114. DOI: https://doi.org/10.1109/TAES.1982.309210.
  20. Rohling H. Radar CFAR Thresholding in Clutter and Multiple Target Situations. IEEE Transactions on Aerospace and Electronic Systems. 1983. V. AES-19. № 4. P. 608-621. DOI: https://doi.org/10.1109/TAES.1983.309350.
  21. Richards M.A. Fundamentals of Radar Signal Processing. McGraw Hill Professional. 2005. 656 p.
  22. Van Cao T.T. A CFAR thresholding approach based on test cell statistics. Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509). 2004. P. 349-354. DOI: https://doi.org/10.1109/NRC.2004.1316448.
  23. Smith M.E., Varshney P.K. Intelligent CFAR processor based on data variability. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 3. P. 837-847. DOI: https://doi.org/10.1109/7.869503.
  24. Nathanson F.E., Reilly J.P., Cohen M.N. Radar Design Principles, 2d ed. McGraw-Hill, New York. 1991. 724 p.
  25. Ivanov V.A., Ovchinnikov V.V., Elsukov A.A., Katkov E.V., Chernov A.A. Fil'tracija pomeh pri prijome shirokopolosnyh signalov v sisteme diagnostiki ionosfernyh linij KV-svjazi. Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Ser. Radiotehnicheskie i infokommunikacionnye sistemy. 2020. № 1(45). S. 18-29. DOI: https://doi.org/10.25686/2306-2819.2020.1.18 (in Russian).
  26. Ivanov D.V., Ivanov V.A., Rjabova N.V., Ovchinnikov V.V. Novye vozmozhnosti sistem shirokopolosnoj kognitivnoj svjazi, rabotajushhih v ionosfernyh KV-radiokanalah s vnutrimodovoj dispersiej. Radiotehnika. 2022. T. 86. № 11. S. 162-177. DOI 10.18127/j00338486-202211-23 (in Russian).
Date of receipt: 06.11.2023
Approved after review: 14.11.2023
Accepted for publication: 30.11.2023