350 rub
Journal Radioengineering №12 for 2023 г.
Article in number:
Remote sensing of soil with increased potassium and uranium content
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202312-16
Authors:

G.A. Kolotkov1

1 V.E. Zuev Institute of Atmospheric Optics SB RAS (Tomsk, Russia)

1 kolotkov@iao.ru

Abstract:

Formulation of the problem. The currently widely used methods for monitoring and assessing the radiation situation in the study areas are based on the analysis of precipitated aerosols and radiometry data. The quantitative characterization of radioactive contamination of soils is carried out using a network of stationary posts, a set of methods and measuring instruments: gamma spectrometers, highly efficient filter materials, as well as measuring radioactive aerosols. Sampling techniques and their subsequent chemical or electric arc analysis require a lot of time for sample preparation and processing, as a result of which they are not effective enough. In addition, such methods are not remote and do not allow to assess the overall level of radioactive contamination, to obtain a picture of the distribution of radioactive substances in the soil in real time. The following requirements are imposed on the methods of remote detection of increased radioactivity in the near-surface and surface air environment: economy, time-consuming, efficiency. Soils with a high content of radionuclides are of primary interest because they include: alluvial deposits of minerals; ash dumps; storage facilities for liquid radioactive waste; places used for storing industrial and construction waste, including technical equipment containing radioactive materials. The work is aimed at solving the problem of remote detection of the increased radiation background of the earth using an airborne radiometric complex of an aircraft or helicopter type. The developed passive monitoring method is based on measuring the power of spontaneous emission of atomic hydrogen from the earth's surface at a frequency of 1420 MHz.

Purpose. Determine local areas of change in the radiation background in the southeast of the Tomsk region with an increased content of natural and anthropogenic radionuclides. Assess the possibility of measuring the radiation background of the earth's surface by secondary manifestations of radioactivity with an onboard radiometer with a planar antenna.

Tasks. Analysis of sources and density of radioactive contamination of soils and radiochemical processes triggered by homodyne dissociation of water molecules under the influence of radioactive radiation of potassium and uranium. Simulation of processes of excitation of gaseous and aerosol soil components under the influence of radioactive radiation of potassium and uranium. Simulation of the interaction of bremsstrahlung of electrons and components of the medium. Study of the kinetics of photochemical reactions. Calculation of the stationary concentration of atomic hydrogen. Evaluation of the power of radio emission at a frequency of 1420 MHz from the study area, using the example of areas in the southeast of the Tomsk region. Conduct a theoretical assessment of the distance at which it is possible to register this radiation from the earth's surface in accordance with the level of pollution. Substantiation of the technical characteristics of the radiometric complex (dimensions of the receiving antenna).

Results. The main features of the content of potassium and uranium in the upper soil layer of the southeast of the Tomsk region are considered. Based on field research data with a GS-512 portable gamma spectrometer, ICP-MS analysis and using the ArcGIS software product, geoinformation models of the distribution of potassium and uranium in the soils of the study area were created. As a result of the study, it was shown that the differences in the contents of potassium and uranium in some places reach an excess of three times, and within the zone of small-leaved forests in the southeast of the Tomsk region, they generally correspond to the background ones.

Practical relevance. The results of the research will provide an opportunity to conduct radiophysical mapping of local changes in the radiation background of the earth's surface based on the measurement of weak electromagnetic radiation in the frequency range of 1.4-1.7 GHz using the existing onboard radiometer. The developed method will make it possible to remotely detect radioactively contaminated land in the study areas. It will reduce the growth of risks to life and improve the health of citizens, which in turn will have a beneficial effect on the economy.

Pages: 149-157
References
  1. Agbalagba O.E., Anikwe L.U. Radiometric mapping of terrestrial gamma radiation and evaluation of radiological health risk on the residents in Nigeria state commercial and capital cities. Environmental Forensics. 2021. V. 22(1-2). P. 75-90. DOI: http://dx.doi.org/10.1080/15275922.2020.1836079.
  2. Buchel'nikov V.S., Talovskaja A.V., Jazikov E.G., Simonenkov D.V., Belan B.D., Tentjukov M.P. Analiz soderzhanija jelementov v ajerozoljah po dannym passivnogo probootbora na observatorii «Fonovaja». Optika atmosfery i okeana. 2020. T. 33. № 6. S. 453–458. DOI: 10.15372/AOO20200606 (in Russian).
  3. Kolotkov G.A., Matina P.N. Gamma-spektrometricheskoe opredelenie soderzhanija urana, torija i kalija v pochvah jugo-vostoka tomskoj oblasti. Izvestija vuzov. Ser. Fizika. 2021. T. 64. №2-2 S. 52–56. DOI: 10.17223/00213411/64/2-2/52 (in Russian).
  4. Kolotkov G.A., Matina P.N., Myshkin V.F. Evaluation of Onboard Radiometric System for Remote Sensing Detection of Heightened Radioactivity of Soil. At Energy. 2022. V. 131. P. 169–172. DOI: 10.1007/s10512-022-00861-9.
  5. Radiacionnaja obstanovka na territorii Rossii i sopredel'nyh gosudarstv v 2020 godu. Ezhegodnik. Obninsk: FGBU «NPO Tajfun». 2021. 330 s. (in Russian).
  6. Talovskaja A.V., Raputa V.F., Filimonenko E.A., Jazikov E.G. Jeksperimental'nye i chislennye issledovanija dlitel'nogo zagrjaznenija snegovogo pokrova uranom i toriem v okrestnostjah teplojelektrostancii (na primere Tomskoj GRJeS-2). Optika atmosfery i okeana. 2013. T. 26. № 8. S. 642–646 (in Russian).
  7. Raputa V.F., Lezhenin A.A. Ocenka dinamicheskih i teplovyh harakteristik pod’ema dymovogo shlejfa po sputnikovoj informacii. Optika atmosfery i okeana. 2021. T. 34. № 7. S. 530–534. DOI: 10.15372/AOO20210707 (in Russian).
  8. INTERNATIONAL ATOMIC ENERGY AGENCY, Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency, Emergency Preparedness and Response, IAEA, Vienna (2005). [Jelektronnyj resurs]. – Rezhim dostupa: https://www-pub.iaea.org/MTCD/Publications/PDF/Exercise2005_web.pdf.
  9. Raputa V.F., Kokovkin V.V., Amikishieva R.A. Nazemnyj i sputnikovyj monitoring zagrjaznenija snezhnogo pokrova v okrestnostjah cementnogo zavoda. Optika atmosfery i okeana. 2022. T. 35. № 6. S. 495–499. DOI: 10.15372/AOO20220610 (in Russian).
  10. de Almeida G.S., Rizzo R., Amorim M.T.A., dos Santos N.V., Rosas J.T.F, Campos L.R, Rosin N.A., Zabini A.V., Dematte Jose A.M. Monitoring soil–plant interactions and maize yield by satellite vegetation indexes, soil electrical conductivity and management zones. Precision Agric. 2023. V. 24. P. 1380–1400. https://doi.org/10.1007/s11119-023-09994-8.
  11. Ijeh, B.I., Anyadiegwu, F.C., Onwubuariri, C.N., Eze M.O. Evaluation of geothermal resource potential of the Lower Benue Trough using aeromagnetic and radiometric data. Model. Earth Syst. Environ. 2023. https://doi.org/10.1007/s40808-023-01796-1.
  12. Ermolov Ju.V., Smolencev N.B. Zimnij fonovyj stok primesej atmosfery na jugo-vostoke Zapadnoj Sibiri. Optika atmosfery i okeana. 2020. T. 33. № 1. S. 75–81. DOI: 10.15372/AOO20200111 (in Russian).
  13. Ilori A.O., Chetty N., Adeleye B. Assessment of Radiological Hazard Indices Due to Natural Radionuclides in the Soil of Irele Local Government Area, Ondo State Nigeria. Environmental Forensics. 2023. P. 1–7. DOI: 10.1080/15275922.2023.2172096.
  14. Ndour O., Thiandoume C., Traore A., Cagnat X., Diouf P.M., Ndeye M., Ndao A.S., Tidjani A. Determination of natural radionuclides in phosphogypsum samples from phosphoric acid production industry in Senegal. Environmental Forensics. 2021. P. 1–8. DOI: 10.1080/15275922.2021.2006362.
  15. Golubjatnikov G.Ju., Kurjak A.N., Tihomirov B.A. Pogloshhenie vodjanym parom lazernyh nanosekundnyh impul'sov 266 nm s linejnoj i krugovoj poljarizaciej izluchenija. Optika atmosfery i okeana. 2020. T. 33. № 7. S. 575–577. DOI: 10.15372/AOO20200712 (in Russian).
  16. Pradeep Kumar K.A, Shanmugha Sundaram G.A, Venkatesh S., Gandhiraj R., Thiruvengadathan R. A. Monte Carlo simulation study of L-band emission upon gamma radiolysis of water. Radiation Physics and Chemistry. 2023. V. 207. 110883. https://doi.org/10.1016/j.radphyschem.2023.110883.
  17. Sultana Abida, Meesungnoen Jintana, Jay-Gerin Jean-Paul. Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25-700 °C. Physical Chemistry Chemical Physics. 2020. V. 22(14). P. 7430-7439. https://doi.org/10.1039/D0CP00601G.
  18. Abdullaev S.F., Maslov V.A., Nazarov B.I., Kodirova H.I., Karieva R.A., Dzhuraev A.M., Davlatshoev T. Izotopnyj sostav atmosfernogo ajerozolja Tadzhikistana. Optika atmosfery i okeana. 2018. T. 31. № 2. S. 114–120. DOI: 10.15372/AOO20180206 (in Russian).
  19. Zheltonozhskaya M.V., Kuzmenkova N.V., Vlasova I.E., Polyakova T.R., Rozanov V.V., Chernyaev A.P. Study of the behavior of fuel fallout in environment. Science Intensive Technologies. 2023. V. 24. № 1. P. 13−23. DOI: https://doi.org/10.18127/j19998465-202301-02 (in Russian)
  20. Zheltonozhskaya M.V., Zheltonozhskiy V.A., Lipskaya A.I., Nikitin A.N., Rozanov V.V., Chernyaev A.P., Vasiliev A.B. Assessment of mouse rodents’ dosefrom the CHNPP contaminated territories. Science Intensive Technologies. 2021. V. 22. № 2. P. 24−33. DOI: https://doi.org/10.18127/j19998465-202102-03 (In Russian)
  21. Rahmatov M.N., Abdullaev S. F. Soderzhanie tjazhelyh metallov v pylevom ajerozole i pochvah Severnogo Tadzhikistana. Optika atmosfery i okeana. 2021. T. 34. № 2. S. 112–121. DOI: 10.15372/AOO20210206 (in Russian).
  22. Atmosfera: Spravochnik / Pod red. Ju.S. Sedunova. M.: Gidrometeoizdat. 1991. 502 s. (in Russian).
  23. de Gasperin F., Intema H.T., Frail D.A. A radio spectral index map and catalogue at 147–1400 MHz covering 80 per cent of the sky. Monthly Notices of the Royal Astronomical Society. 2018. V. 474(4). P. 5008–5022. https://doi.org/10.1093/mnras/stx3125.
  24. ITU. 2008. Radio Regulations. Edition of 2008. V. 3.
  25. Postanovlenie Pravitel'stva RF ot 18 sentjabrja 2019 g. № 1203-47 «Ob utverzhdenii Tablicy raspredelenija polos radiochastot mezhdu radiosluzhbami Rossijskoj Federacii i priznanii utrativshimi silu nekotoryh postanovlenij Pravitel'stva Rossijskoj Federacii» S izmenenijami i dopolnenijami ot: 4 maja 2021 g., 26 fevralja 2022 g. [Jelektronnyj resurs] − Rezhim dostupa: https://docs.cntd.ru/document/561295589 (data obrashhenija: 08.03.23) (in Russian).
  26. Rihvanov L.P., Strahovenko V.D., Malikova I.N., Shherbov B.L., Suharukov F.V., Aturova V.P. Soderzhanie radioaktivnyh jelementov v pochvah Sibiri. Sb. materialov Mezhdunar. nauch.-praktich. konferencii «Radiojekologija XXI veka» [Jelektronnyj resurs]. - Krasnojarsk: Sibirskij federal'nyj un-t. 2011. - Rezhim dostupa: http://conf.sfu-kras.ru/conf/radio-ecology-XXI/report?memb_id=1648, svobodnyj (in Russian).
  27. Kolotkov G., Penin S. Remote monitoring of emission activity level from NPP using radiofrequencies 1420, 1665, 1667 MHz in real time. Journal of Environmental Radioactivity. 2013. V. 115. P. 69–72. https://doi.org/10.1016/j.jenvrad.2012.07.004.
Date of receipt: 06.11.2023
Approved after review: 14.11.2023
Accepted for publication: 30.11.2023