350 rub
Journal Radioengineering №12 for 2023 г.
Article in number:
Estimation of the error in determining the imaginary part of the complex dielectric constant of weakly absorbing liquids using the interference method in the Ka-range
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202312-14
UDC: 53.088.3
Authors:

E.Yu. Korovin1, B.Z. Garmaev2, A.V. Bazarov3, А.S. Bazarova4, E.B. Atutov5

1–5 Institute of Physical Materials Science of the Siberian Branch of the RAS (IPMS SB RAS) (Ulan-Ude, Russia)

1 korovin_ey@mail.tsu.ru, 2 bair.garmaev@gmail.com, 3 alebazaro@gmail.com, 4arunabas@mail.ru, 5evgeniy_atutov@mail.ru

Abstract:

A huge amount of work has been devoted to the development of methods for determining the complex dielectric constant of substances, and from all this diversity it is impossible to single out a universal method suitable for a wide range of frequencies and all states of matter. Previously, the authors proposed a non-contact method for determining the dielectric constant of liquids in the Ka range from the dependence of the reflection coefficient on the thickness of the probed liquid layer. In the specified range, the proposed method is not inferior in accuracy to determining the desired value to radio spectroscopes from Keysight Technologies and Rodhe & Shwarz. Using transformer oil as a liquid with minimal absorption as an example, the error in determining the real part of the complex dielectric constant was assessed.

The presented work provides an assessment of the methodological error in determining the imaginary part of the complex dielectric constant for weakly absorbing liquids. The limits of applicability of the developed methodology are shown.

The developed method has a number of advantages. One of which is that during measurements, antenna-feeder devices do not come into contact with the medium under test and cannot be damaged due to any chemical reactions. In this regard, the method can be used for chemically active media and over a wide temperature range. The method has significant speed; its use does not require long-term calibrations. In addition, a scalar spectrum analyzer or a standard SWR meter is sufficient for measurements. The most suitable application of the proposed development is the use in the oil and gas industry as moisture meters of petroleum fluids.

Pages: 129-137
For citation

Korovin E.Yu., Garmaev B.Z., Bazarov A.V., Bazarova А.S., Atutov E.B. Estimation of the error in determining the imaginary part
of the complex dielectric constant of weakly absorbing liquids using the interference method in the Ka-range. Radiotekhnika. 2023.
V. 87. № 12. P. 129−136. DOI: https://doi.org/10.18127/j00338486-202312-14 (In Russian)

References
  1. Ugur C. Hasar, Hamdullah Ozturk, Mehmet Ertugrul, Joaquim J. Barroso, Omar M. Ramahi. Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples from Reference-Plane-Invariant Measurements. IEEE Transactions on Instrumentation and Measurement. 2023. V. 72. Р. 1-8. DOI:10.1109/TIM.2023.3273664.
  2. Xue-Quan Huang, Mei-Zhen Xiao, Fu-Chang Chen, Qin Shi, Xiao He. A Novel Permittivity Measurement Method Using Multiple TMmn0 Modes of Cylindrical Cavity. IEEE Transactions on Instrumentation and Measurement. 2023. V. 72. Р. 1-9. DOI: 10.1109/TIM.2023.3273672.
  3. Brandt A.A. Issledovanie dijelektrikov na sverhvysokih chastotah. M.: Fizmatlit. 1963. 404 s. (in Russian).
  4. Nicolson A.M., Ross G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Transactions on Instrumentation and Measurement. 1970. V. 19. № 4. P. 377-382. DOI: 10.1109/TIM.1970.4313932.
  5. Chen L.F., Ong C.K., Neo C.P., Varadan V.V., Varadan V.K. Microwave Electronics Measurement and Materials Characterization. John Wiley & Sons. 2004. 537 p.
  6. Wang Y., Afsar M.N. Measurement of complex permittivity of liquids using waveguide techniques. Progress in Electromagnetics Research. PIER. 2003. № 42. Р. 131–142. DOI: 10.2528/PIER03010602.
  7. Dmitriev M.S., D'jakonov M.V., Guchkin A.S., Krasnokutskij R.A. Ustanovka dlja izmerenija kompleksnoj dijelektricheskoj pronicaemosti zhidkih dijelektrikov. Pribory i tehnika jeksperimenta. 2018. № 3. S. 51-53. DOI: 10.7868/S0032816218030229 (in Russian).
  8. La Gioia A., et al. Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices. Diagnostics (Basel, Switzerland). Junе 2018. V. 8. № 2. DOI:10.3390/diagnostics8020040.
  9. Agilent Technologies. Santa Clara, CA. US. 85070E Dielectric Probe Kit. (July 16 2013) [Online]. Available https://www.key-sight.com/ru/ru/product/85070E/dielectric-probe-kit.html.
  10. Piuzzi E., et al. A Comparative Analysis Between Customized and Commercial Systems for Complex Permittivity Measurements on Liquid Samples at Microwave Frequencies. in IEEE Transactions on Instrumentation and Measurement. May 2013. V. 62. № 5. Р. 1034-1046. DOI: 10.1109/TIM.2012.2236791.
  11. Weiss M., Knochel R. A novel method of determining the permittivity of liquids. IEEE Transactions on Instrumentation and Measurement. June 2000. V. 49. № 3. Р. 488-492. DOI: 10.1109/19.850381.
  12. Brehovskih L.M. Volny v sloistyh sredah. M.: Nauka. 1973. 344 s. (in Russian).
  13. Patent № 2787302 (RF), MPK G01R 27/26 (2006.01). Sposob opredelenija mnimoj chasti kompleksnoj dijelektricheskoj pronicaemosti zhidkih dijelektrikov so slabym pogloshheniem v diapazone 22-40 GGc. Atutov E. B., Korovin E.Ju., Garmaev B.Z., Basanov B.V., Bazarov A.V., Bashkuev Ju.B.; Zajavitel' i patentoobladatel' Institut Fizicheskogo Materialovedenija Sibirskogo otdelenija Rossijskoj akademii nauk. № 2022109575; zajavl. 11.04.2022; opubl. 09.01.2023; Bjul. № 4; 1 s. (in Russian).
  14. Patent № 2766059 (RF), MPK G01R 27/26 (2006.01). Sposob beskontaktnogo opredelenija dijelektricheskoj pronicaemosti zhidkih dijelektrikov v diapazone 22-40 GGc. Cydypov B.G., Atutov E.B., Basanov B.V., Bazarov A.V., Garmaev B.Z.; Zajavitel' i patentoobladatel' Institut Fizicheskogo Materialovedenija Sibirskogo otdelenija Rossijskoj akademii nauk. № 2021113774; zajavl. 14.05.2021; opubl. 07.02.2022; Bjul. № 4; 1 s. (in Russian).
  15. Atutov E.B., Garmaev B.Z., Korovin E.Yu., Basanov B.V., Bazarov A.V., Tsydypov B.G. Estimation of the error of the interference method for determining the dielectric permittivity on the example of transformer oil in the Ka-band. Radiophysics and Quantum Electronics. 2022. V. 64. № 8–9. P. 650-658. DOI: 10.1007/s11141-022-10167-2.
  16. https://www.micran.ru/productions/IIS/accessory/KW_connectors/kw_connectors.
  17. Kuznecov Ja.M., Panin D.N. Raschet kojefficientov otrazhenija ploskoj jelektromagnitnoj volny linejnoj poljarizacii ot sloja kiral'nogo metamateriala, raspolozhennogo na ideal'no provodjashhej ploskosti po geterogennoj modeli Maksvella Garnetta. Radiotehnika. 2022. T. 86. № 6. S. 30-36. DOI: https://doi.org/10.18127/j00338486-202206-05 (in Russian).
  18. https://www.keysight.com/ru/ru/product/85070E/dielectric-probe-kit.html.
Date of receipt: 06.11.2023
Approved after review: 14.11.2023
Accepted for publication: 30.11.2023