350 rub
Journal Radioengineering №12 for 2023 г.
Article in number:
Verification of a modified approach to wire grid approximation of antennas
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202312-13
UDC: 621.396
Authors:

M.T. Nguyen1, A.F. Alhaj Hasan2, T.R. Gazizov3

1-3 Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia)

1 nguyen.t.2213-2022@e.tusur.ru; 2 alhaj.hasan.adnan@tu.tusur.ru; 3 talgat@tu.tusur.ru

Abstract:

In the development of antenna technologies, there is a critical need to achieve a compromise between size, weight, and the desired characteristics of antennas. The desire to create a final product with small dimensions and low weight can lead to a reduction in antenna performance. Therefore, it is necessary to develop approaches and technologies that will allow for a balance between size, weight, and antenna characteristics. At the same time, the costs associated with antenna modeling during the design phase play an important role. Optimizing the antenna modeling process is essential to reduce the time and resources required for modeling. The development of more efficient and accurate modeling approaches can significantly reduce costs and enhance the efficiency of antenna design. Thus, the development of compromise solutions that consider the size, weight, and characteristics of antennas, as well as the search for effective modeling approaches, play a crucial role in the future development of antenna technologies. This work focuses on one such approach known as wire grid approximation. It utilizes an optimal current grid and a its proposed modification. However, it is necessary to verify the modified approach. The main goal of this paper is to verify the modified approach on the example of a horn antenna. The results of applying the modified approach were compared with measurements and calculations obtained from other approaches, showing good agreement. The modified approach demonstrated its ability to create sparse antenna structures that can be manufactured without technical difficulties and with a mass reduction of 1.64 times compared to the original structure. The obtained sparse structure can be used instead of the original one for more efficient modeling, requiring less computational resources (2.69 times less memory and 4.41 times less time). Additionally, it was found that the structure generated by the modified approach exhibits lower sidelobe levels compared to the conventional approach (reduced by 1.92 dB in the H-plane and 0.93 dB in the E-plane). The verified modified approach can be applied in various fields, simplifying the process of antenna modeling and design. The sparse antenna structure obtained using this approach can be implemented in production with significant mass reduction and without technical complexities. Such improvements can find applications in various fields, including telecommunications, radio engineering, and wireless networks.

This research was funded by the Ministry of Science and Higher Education of the Russian Federation project FEWM-2023-0014.

Pages: 118-128
For citation

Nguyen M.T., Alhaj Hasan A.F., Gazizov T.R. Verification of a modified approach to wire grid approximation of antennas. Radiotekhnika. 2023. V. 87. № 12. P. 118−128. DOI: https://doi.org/10.18127/j00338486-202312-13 (In Russian)

References
  1. Berdnikova N.A., Belov O.A., Lopatin A.V. Issledovanie i optimizacija rezhima izgotovlenija vysokotochnogo kompozitnogo reflektora antenny kosmicheskogo apparata. Kosmicheskie apparaty i tehnologii. 2019. T. 3. № 2(28). S. 59–72. DOI: 10.26732/2618-7957-2019-2-59-72 (in Russian).
  2. Olivová J., Popela M., Richterová M., Štefl E. Use of 3D printing for horn antenna manufacturing. Electronics. MDPI AG. 2022. V. 11. № 10. P. 1539. DOI: 10.3390/electronics11101539.
  3. Lukacs P., Pietrikova A., Vehec I., Provazek P. Influence of various technologies on the quality of ultra-wideband antenna on a polymeric substrate. Polymers. MDPI AG. 2022. V. 14. № 3. P. 507. DOI: 10.3390/polym14030507.
  4. Masuk A., Balajti I. Mechatronics engineering aspects of VHF band antenna design of industry 4.0 applications. 2022 23rd International Radar Symposium (IRS), Gdansk, Poland. 2022. P. 77–82. DOI: 10.23919/IRS54158.2022.9905051.
  5. Gazizov T.R. Sistema komp'juternogo modelirovanija slozhnyh struktur provodnikov i dijelektrikov. Materialy vseross. nauch.-praktich. konf., posvjashhennoj 40-letiju TUSUR. 2–4 oktjabrja 2002 g. V 2-h tomah. T. 1. Tomsk. S. 126–128 (in Russian).
  6. Mahfuz M.H., Islam M.R., Park C.W., Elsheikh E.A., Suliman F.M., Habaebi M.H. Wearable textile patch antenna: challenges and future directions. IEEE Access. 2022. V. 10. P. 38406–38427. DOI: 10.1109/ACCESS.2022.3161564.
  7. Boudjerda M., Reddaf A., Kacha A., Hamdi-Cherif K., Alharbi T.E.A., Alzaidi M.S., Alsharef M., Ghoneim S.S.M. Design and optimization of miniaturized microstrip patch antennas using a genetic algorithm. Electronics. MDPI AG. 2022. V. 11. № 14. P. 2123. DOI: 10.3390/electronics11142123.
  8. Dremuhin M.A., Nagovicin V.N. Razrabotka i modelirovanie nemetallicheskoj formoobrazujushhej osnastki dlja izgotovlenija polimernyh kompozicionnyh reflektorov sputnikovyh antenn. Kosmicheskie apparaty i tehnologii. 2021. № 4(38). S. 183–190. DOI: 10.26732/j.st.2021.4.01 (in Russian).
  9. Al-Alem Y., Sifat S. M., Antar Y.M.M., Kishk A.A., Freundorfer A.P., Xiao G. Low-cost circularly polarized millimeter-wave antenna using 3D additive manufacturing. IEEE Access. 2022. V. 10. P. 20539–20546. DOI: 10.1109/ACCESS.2022.3152532.
  10. Song L., Zhang B., Zhang D., Rahmat-Samii Y. Embroidery electro-textile patch antenna modeling and optimization strategies with improved accuracy and efficiency. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 8. P. 6388–6400. DOI: 10.1109/TAP.2022.3145443.
  11. Harrington R.F. Primenenie matrichnyh metodov k zadacham teorii polja. Trudy instituta inzhenerov po jelektronike i radiotehnike. 1967. № 2. S. 5–19 (in Russian).
  12. Zheng S., Zhang P., Okhmatovski V.I. Analysis of benchmark biconical antenna with RWG method of moments for IEEE P2816 project. 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). Denver, CO. USA. 2022. P. 649–650. DOI: 10.1109/AP-S/USNC-URSI47032.2022.9886141.
  13. Jafari S.F., Shirazi R.S., Moradi G., Sibille A., Wiart J. Non-invasive absorbed power density assessment from 5G millimeter-wave mobile phones using method of moments. IEEE Transactions on Antennas and Propagation. 2023. DOI: 10.1109/TAP.2023.3278834.
  14. Hawkins J.D., Lok L.B., Brennan P.V., Nicholls K.W. HF Wire-mesh dipole antennas for broadband ice-penetrating radar. IEEE Antennas and Wireless Propagation Letters. 2020. V. 19. № 12. P. 2172–2176. DOI: 10.1109/LAWP.2020.3026723.
  15. Topa T. Porting wire-grid MoM framework to reconfigurable computing technology. IEEE Antennas and Wireless Propagation Letters. 2020. V. 19. № 9. P. 1630–1633. DOI: 10.1109/LAWP.2020.3012587.
  16. Karasev A.S., Stepanov M.A. Sintez razrezhennoj linejnoj antennoj reshetki s sohraneniem shiriny glavnogo lepestka i minimal'nym pikovym urovnem bokovyh lepestkov pri pomoshhi geneticheskogo algoritma. Zhurnal radiojelektroniki [jelektronnyj zhurnal]. 2022. № 5. DOI: 10.30898/1684-1719.2022.5.5 (in Russian).
  17. Chernyak V.S. O svoystvakh MIMO RLS s razrezhennymi antennymi reshetkami. Uspekhi sovremennoy radioelektroniki. 2017. № 3. S. 61–70. (in Russian).
  18. Kerzhner Y., Epstein A. Metagrating-assisted high-directivity sparse regular antenna arrays for scanning applications. IEEE Transactions on Antennas and Propagation. 2023. V. 71, № 1. P. 650–659. DOI: 10.1109/TAP.2022.3222645.
  19. Alhaj Hasan A., Klyukin D.V., Kvasnikov A.A., Komnatnov M.E., Kuksenko S.P. On wire-grid representation for modeling symmetrical antenna elements. Symmetry. 2022. V. 14. № 7. Р. 1354. DOI: 10.3390/sym14071354.
  20. Alhaj Hasan A., Nguyen T.M., Kuksenko S.P., Gazizov T.R. Wire-grid and sparse MoM antennas: past evolution, present implementation and future possibilities. Symmetry. 2023. V. 15. № 2. Р. 378. DOI: 10.3390/sym15020378.
Date of receipt: 06.11.2023
Approved after review: 14.11.2023
Accepted for publication: 30.11.2023