350 rub
Journal Radioengineering №12 for 2023 г.
Article in number:
Electromagnetic modeling of irradiator of multi-frequency dual-mode antenna of microwave radiometric system
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202312-12
UDC: 621.317.7+528.8
Authors:

E.A. Rostokina1, E.V. Fedoseeva2, G.G. Shchukin3, I.N. Rostokin4, M.A. Matyukov5

1-5 Murom Institute (branch) of the Vladimir State University named after A.G. and N.G. Stoletov (Murom, Russia)

3 A.F. Mozhaisky Military Space Academy (St. Petersburg, Russia)

1 arostokina@yandex.ru; 2 elenafedoseeva@yandex.ru; 3 ggshchukin@mail.ru; 4 rostockin.ilya@yandex.ru; 5 maks.matyukov@mail.ru

 

Abstract:

Microwave radiometric systems are designed to probe the surrounding space by measuring the power of its own radio-thermal radiation of the study area, which determines the low power level of the input signal of the system and the requirement to minimize losses in the antenna-feeder path. The peculiarity of their functioning is the same noise character of both the information signal - the antenna input signal, caused by the reception of radio-thermal radiation from the angular region of the main lobe of the antenna radiation pattern, and the noise received by the antenna in the scattering region of the antenna radiation pattern.

Objective. Optimization of parameters of the antenna mode splitter of the microwave radiometric system with compensation of the influence of phono interference by means of the software-implemented electrodynamic modeling in the software package "Microwave Studio". Analysis of the functional purpose of the mode splitter elements and limitations on the introduced adjustments of their sizes; creation of the model in the software package "Microwave Studio"; step-by-step adjustment of the sizes and location of the mode splitter elements in order to optimize the S-parameters. This paper presents the results of step-by-step optimization of the mode splitter of the microwave radiometric system with compensation of background noise for three frequencies 4 GHz, 9.375 GHz, 22 GHz for the possibility of building a system that can receive radio-thermal radiation in three frequency ranges.

Practical significance Results. This paper presents the results of step-by-step optimization of the mode splitter of the microwave radiometric system with compensation of background noise for three frequencies 4 GHz, 9.375 GHz, 22 GHz for the possibility of building a system that can receive radio-thermal radiation in three frequency ranges. The conducted researches allowed to make an optimized version of the multi-frequency dual-mode microwave radiometric system of remote sensing of the atmosphere.

The research was supported by the Russian Science Foundation grant No. 21-19-00378, https://rscf.ru/project/21-19-00378/.

Pages: 110-117
For citation

Rostokina E.A., Fedoseeva E.V., Shchukin G.G., Rostokin I.N., Matyukov M.A. Electromagnetic modeling of the irradiator of the multi-frequency dual-mode antenna of the microwave radiometric system. Radiotekhnika. 2023. V. 87. № 12. P. 110−117. DOI: https://doi.org/10.18127/j00338486-202312-12 (In Russian)

References
  1. Stepanenko V.D., Shhukin G.G., Bobylev L.P., Matrosov S.Ju. Radioteplolokacija v meteorologii. L.: Gidrometeoizdat. 1987. 283 s. (in Russian).
  2. Shutko A.M. SVCh-radiometrija vodnoj poverhnosti i pochvogruntov. M.: Nauka. 1986. 190 s. (in Russian).
  3. Kutuza B.G., Jakovlev O.I., Danilychev M.V. Sputnikovyj monitoring Zemli: Mikrovolnovaja radiometrija atmosfery i poverhnosti: Monografija. M.: Lenand. 2016 (in Russian).
  4. Bogorodskij V.V., Kozlov A.I. Mikrovolnovaja radiometrija zemnyh pokrovov. Pod red. V.V. Bogorodskogo. L. Gidrometeoizdat. 1985. 272 s. (in Russian).
  5. Falin V.V. Radiometricheskie sistemy SVCh. M.: Luch. 1997. 440 s. (in Russian).
  6. Сimini D., Hewison T.J., Martin L., Guldner J., Gaffard C., Marzano F.S. Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC. Meteorologische Zeitschrift. 2006. V. 15. № 5. рр. 45-56.
  7. Westwater E.R., Crewell S., Matzler C. Surface-based microwave and millimeter wave radiometric remote sensing of the troposphere: a tutorial. IEEE Geos. and Rem. Sens. Soc. Newsletter. 2005. Р. 16-33.
  8. Patent na izobretenie № 2300831 (RF). Sposob snizhenija urovnja shuma antenny i dvuhmodovaja aperturnaja antenna. Fedoseeva E.V., Rostokina E.A., Rostokin I.N. Opubl.: 10.06.2007. Bjul. 16. (in Russian).
  9. Patent na poleznuju model' № 98820 (RF). Radiometricheskaja sistema s kompensaciej vneshnih pomeh i nestabil'nosti kojefficienta peredachi sistemy. Fedoseeva E.V., Rostokin I.N., Echin P.A. Opubl.: 27.10.2010. Bjul. № 30 (in Russian).
  10. Patent na poleznuju model' №122185 (RF). Moduljacionnyj radiometr dvuhkanal'noj radiometricheskoj sistemy s programmno-apparatnym modulem. Fedoseeva E.V., Echin P.A., Rostokin I.N., Molotkov A.A., Fedoseev A.A. Opubl.: 20.11.2012. Bjul. № 32 (in Russian).
  11. Rostokin I.N., Fedoseeva E.V., Fedoseev A.A. Voprosy postroenija mnogochastotnoj SVCh-radiometricheskoj sistemy distancionnogo zondirovanija oblachnoj atmosfery s kompensaciej fonovogo izluchenija. Radiotehnicheskie i telekommunikacionnye sistemy. 2015. № 1. S. 5-11 (in Russian).
  12. Rostokin I.N., Fedoseeva E.V., Shhukin G.G., Rostokina E.A. Zadachi i principy organizacii sistemy sbora i obrabotki dannyh mnogochastotnoj SVCh-radiometricheskoj sistemy kontrolja sostojanija meteoobrazovanij s kompensaciej fonovyh shumov. Radiotehnicheskie i telekommunikacionnye sistemy. 2017. № 1(25). S. 3-16 (in Russian).
  13. Fedoseeva E.V., Rostokin I.N., Shchukin G.G., Rostokina E.A. Multi-band microwave radiometric sensing of remote rain zones. Journal of Physics: Conference Series2020 Russian open scientific conference “Modern problems of remote sensing, radar, wave propagation and diffraction” (MPRSRWPD). 2020. DOI: 10.1088/1742-6596/1632/1/012012.
  14. Fedoseeva E.V., Rostokina E.A., Rostokin I.N. Ocenka parametrov modovogo razdelitelja dvuhkanal'noj zerkal'noj antenny radioteplolokacionnoj sistemy. Radiotehnika. 2006. T. 72. № 6. S. 126-128 (in Russian).
  15. Drize A.D., Klimov K.N. Jelektrodinamicheskoe modelirovanie selektorov poljarizacii s pomoshh'ju programmnogo kompleksa CST Studio Suite. Antenny. 2020. № 6. S. 41-47. DOI: 10.18127/j03209601-202006-05 (in Russian).
Date of receipt: 06.11.2023
Approved after review: 14.11.2023
Accepted for publication: 30.11.2023