350 rub
Journal Radioengineering №11 for 2023 г.
Article in number:
Method for designing electrically small transmitting HF antennas operating in broadband radio links for manpack and mobile transceivers
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202311-22
UDC: 621.396.67
Authors:

S.V. Krivaltsevich1, N.E. Agarkov2

1,2 Omsk Scientific-Research Institute of Instrument Engineering (Omsk, Russia)

1,2 Omsk Scientific Center SB RAS, Institute of Radiophysics and Physical Electronics (Omsk, Russia)

1 Dostoevsky Omsk State University (Omsk, Russia)

1 kriser2002@mail.ru; 2 agarkov.nikita@gmail.com

Abstract:

The continuous growth of the vlume of transmitted information in the HF range leads to the need to use broadband radio links with a signal bandwidth of up to 40-48 kHz or more in radio communication complexes. Whip antennas used in practice, as well as roof dipole and loop antennas of mobile radio stations, are electrically small and have narrow matching bands, especially in the lower part of the HF range. A narrow antenna matching band when operating in a broadband radio link leads to a decrease in the output power of the radio station, to a drop in the information exchange rate and, as a result, to a decrease in the overall efficiency of the radio link. The mere possibility of matching an electrically small antenna at a specific frequency without taking into account the band is currently not enough.

The target of this paper is to propose a methodology for designing electrically small antennas of the HF range, which allows simultaneously taking into account the matching band and the efficiency of the system "Ground Antenna - Antenna Matching Device" according to specified criteria with known overall dimensions of the antenna.

The equivalent equivalent circuits of electrically small HF band antennas are analyzed and the main types of antenna matching devices are determined. A technique for designing these antennas is proposed, based on the use of a number of initial conditions for calculating the maximum active resistance of the antenna that satisfies the given system efficiency and further obtaining the antenna reactance necessary to achieve the required system matching bandwidth. Mathematical expressions are given that allow calculating the system matching bandwidth for four types of antenna matching devices using elements with lumped parameters.

The proposed method combines the frequency characteristics of the antenna and the matching device into a chain of interconnected elements, which makes it possible to calculate the required values of the antenna impedance according to the given initial conditions even before the stage of its electrodynamic modeling. The systematic approach in the methodology provides the possibility of simultaneous development of the system both in terms of the design of the antenna and in terms of the implementation of the elements of the matching device.

Pages: 163-179
For citation

Krivaltsevich S.V., Agarkov N.E. Method for designing electrically small transmitting HF antennas operating in broadband radio links for manpack and mobile transceivers. Radiotekhnika. 2023. V. 87. № 11. P. 163−179. DOI: https://doi.org/10.18127/j00338486-202311-22 (In Russian)

References
  1. Golovin O.V., Prostov S.P. Sistemy i ustrojstva korotkovolnovoj radiosvjazi. M.: Gorjachaja linija – Telekom. 2006. S. 3-29 (in Russian).
  2. Johnson E.E. Staring link establishment for high-frequency radio. 2015 IEEE Military Communications Conference. 2015.
    P. 1433-1438. DOI: 10.1109/MILCOM.2015.7357646.
  3. Johnson E.E. Wideband ALE – the next generation of HF. Nordic HF Radio Conference HF ’16. Fårö, Sweden. Aug. 2016.
    P. 9.1.1-9.1.18.
  4. Puksa D.O., Romanov Ju.V. Rezul'taty trassovyh ispytanij adaptivnoj KV-radiolinii vysokoskorostnoj peredachi dannyh fajlovogo tipa na baze radiomodema s polosoj signala do 40 kGc. Tehnika radiosvjazi. 2015. № 4(27). S. 14-20 (in Russian).
  5. Special'nye radiosistemy: oficial'nyj sajt. URL: https:// www.radioscanner.ru/files/systems/file20434/ (data obrashhenija 02.12.2022) (in Russian).
  6. Volkomirskaja L.B., Gulevich O.A., Krasheninnikov I.V., Krivosheev N.V., Reznikov A.E., Sahterov V.I. Rezul'taty jeksperimentov v srednih shirotah s ispol'zovaniem shirokopolosnyh korotkovolnovyh signalov dlja svjazi i diagnostiki struktury ionosfery. Jelektronnyj zhurnal «Inzhenernyj vestnik Dona». 2019. № 1(52). S. 1-11 (in Russian).
  7. Gvozdev I.N., Murav'ev Ju.K., Serkov V.P., Chernoles V.P. Harakteristiki antenn radiosistem svjazi. Leningrad: VAS. 1978. 231 s.
  8. The Datasheet Archive: oficial'nyj sajt. URL: https:// www.datasheet.datasheetarchive.com/originals/library/Datasheet-01/DSA007413.pdf (data obrashhenija 02.12.2022).
  9. Hansen R.C., Collin R.E. Small Antenna Handbook. John Wiley and Sons. 2011. 360 p.
  10. Shih T.-Y., Behdad N. Bandwidth enhancement of HF antennas mounted on military platforms using a Characteristic-Modes-Based Design Approach. 2015 International Symposium on Antennas and Propagation (ISAP). 2015. P. 1-3.
  11. Ignatenko M., Dejan S.L., Lasser G. Wideband HF Vehicular Antennas for Communication-on-the-Move. 2015 Antenna Applications Symposium. 2015. P. 1-18.
  12. Lakhtakia A., Furse C.M. The World of Applied Electromagnetics. Springer. 2018. 735 p.
  13. Nikkhah N., Zakeri B., Abedi H. Extremely electrically small MF/HF antenna. IET Microw. Antennas Propag. Jan. 2020. V. 14.
    Is. 1. P. 88-92. DOI: 10.1049/iet-map.2019.0200.
  14. Fujimoto K.F., Morishita H. Modern Small Antennas. Cambridge University Press. 2013. 488 p.
  15. Sljusar V. 60 let teorii jelektricheski malyh antenn. Nekotorye itogi. Jelektronika: nauka, tehnologija, biznes. 2006. № 7(73). S. 10-19 (in Russian).
  16. Belichenko V.P. Jelektricheski malye antenny: hronologija, reshennye zadachi, novye problemy i idei. Aktual'nye problemy radiofiziki. Sb. trudov IX Mezhdunar. nauch.-praktich. konf. «APR-2021». 2021. S. 56-61 (in Russian).
  17. Meshalkin V.A., Sosunov V.V., Filippov V.V. Polja i volny v zadachah razvedzashhishhennosti i radiojelektronnoj zashhity sistem svjazi. SPb: VAS. 1993. 321 s. (in Russian).
  18. Vygodskij M.Ja. Spravochnik po jelementarnoj matematike. M.: Nauka. 1976. S. 145-151, 153-170 (in Russian).
  19. GOST 11326.4-79. Kabel' radiochastotnyj marki RK 50-7-11. M.: Izd-vo standartov. 1989. 6 s. (in Russian).
  20. Babkov V.Ju. Ocenka realizuemogo dopuska shirokopolosnogo soglasovanija antenn. Voprosy rascheta i proektirovanija antenn i radiolinij. 1989. S. 159-163 (in Russian).
  21. Babkov V.Ju., Petuhov A.A. Shirokopolosnye perestraivaemye ustrojstva soglasovanija antenn. Voprosy rascheta i proektirovanija antenn i radiolinij. 1989. S. 170-177 (in Russian).
  22. Vereshhagin E.M. Antenny i rasprostranenie radiovoln. M.: Voenizdat. 1964. 240 s. (in Russian).
  23. Izjumov N.M., Linde D.P. Osnovy radiotehniki. M.: Radio i svjaz'. 1983. 376 s. (in Russian).
  24. Straw R.D. The ARRL Antenna Book. Twenty-second Edition. Newington. 2011. 500 p.
  25. Agarkov N.E. Predely povyshenija jeffektivnosti prizemnyh jelektricheski malyh antenn KV-diapazona v sisteme «Antenna – soglasujushhee ustrojstvo» s obshhimi poterjami. Sb. trudov XXVIII Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'» (RLNC-2022). 2022. T. 5. S. 219-233 (in Russian).
  26. Babkov V.Ju., Murav'ev Ju.K. Osnovy postroenija ustrojstv soglasovanija antenn. Leningrad: VAS. 1980. 240 s. (in Russian)
  27. Agarkov N.E. Razrabotka shirokopolosnyh soglasujushhih transformatorov na ferritah dlja jelektricheski malyh antenn KV-diapazona. Tezisy dokladov XIII Ezhegodnoj studencheskoj nauch.-praktich. konf. «Priborostroenie i informacionnye tehnologii» (PIT-2020). 2021. S. 15-21 (in Russian).
  28. Agarkov N.E. Proektirovanie peredajushhih malogabaritnyh shtyrevyh antenn KV-diapazona v sisteme «antenna – soglasujushhee ustrojstvo». Tehnika radiosvjazi. 2022. Vyp. 1(52). S. 30-43. DOI: 10.33286/2075-8693-2022-52-30-43 (in Russian).
  29. Buzov A.L., Krasilnikov A.D., Kubanov V.P., Minkin M.A., Nosov N.A. Promising antenna solutions for radio communication facilities. Antenny. 2019. № 7 (261). S. 17-27. DOI: 10.18127/j03209601-201907-02 (in Russian).
Date of receipt: 31.07.2023
Approved after review: 03.08.2023
Accepted for publication: 30.10.2023