350 rub
Journal Radioengineering №11 for 2023 г.
Article in number:
Relative positioning in GNSS on ultra-long baseline
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202311-16
UDC: 539.163
Authors:

A.A. Chugunov1, A.P. Malyshev2, S.V. Chernyh3, A.D. Evseev4

1-4 National Research University “MPEI” (Moscow, Russia)

1 san4es_95@mail.ru; 2 malyshevap99@gmail.com; 3 chernykhsvl@mpei.ru; 4 yevseevad@mpei.ru

Abstract:

Today, depending on the purpose of the problems being solved, a distinction is made between absolute and relative (differential) methods of coordinate determination. Moreover, in the first case, the task at hand can be solved based on the use of one, separately operating satellite receiver. In the second case, characteristic of differential measurements, it is assumed that two or more simultaneously operating receivers are used, located at designated points separated in space. The main distinctive feature of these methods is to obtain coordinates that differ significantly in accuracy, which is explained by the difficulty of taking into account systematic errors inherent in absolute methods. The advantages of relative positioning methods on an ultra-long base in GNSS are achieved through mutual compensation of slowly changing components of the errors of primary measurements - pseudo-ranges and pseudo-phases. This paper describes a method for solving non-integer phase ambiguity using a linear combination, which makes it possible to solve the navigation problem in a relative mode using pseudo-phase measurements. The ionospheric delay is also compensated by linear combinations, and the troposphere is estimated using the local Neil model. The navigation problem is solved by the mixed least squares method. The results of processing real GNSS measurements (base length more than 2000 km) with the developed algorithm showed that achieving decimeter accuracy in determining the coordinates of consumers in differential mode is possible without using auxiliary data, for example, accurate ephemeris or atmospheric parameters, but only by processing directly measured pseudophases and pseudodelays.

Pages: 109-120
For citation

Chugunov A.A., Malyshev A.P., Chernykh S.V., Evseev A.D. Relative positioning in GNSS on an ultra-long base. Radiotekhnika. 2023. V. 87. № 11. P. 109−120. DOI: https://doi.org/10.18127/j00338486-202311-16 (In Russian)

References
  1. Kouba Jan. Guide to using international GNSS service (IGS) products. Geodetic Survey Division. Natural Resources Canada. May 2009. http://igscb.jpl.nasa.gov/components/usage.html.
  2. Podkorytov A.N. Vysokotochnoe opredelenie koordinat potrebitelja v absoljutnom rezhime v global'nyh navigacionnyh sputnikovyh sistemah s ispol'zovaniem razreshenija celochislennoj neodnoznachnosti psevdofazovyh izmerenij. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2012. T. 10. № 10. S. 45-51 (in Russian).
  3. GOST R 53460-2009. Global'naja spravochnaja atmosfera dlja vysot ot 0 do 120 km dlja ajerokosmicheskoj praktiki (in Russian).
  4. Hofmann-Wellenhof B.Ю., Lichtenegger H., Wasle E. GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer. Wien-New York. 2008
  5. Marini J.W. Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile. Radio Sci. 1972.V. 7. № 2. Р. 223–231. DOI: 10.1029/RS007i002p00223.
  6. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global positioning system. J. Geophys. Res. 1992. № 97. Р. 15787–15801.
  7. Niell A.E. Global Mapping Functions for the atmospheric delay at radiowavelengths. J. Geophys. Res. 1996. № 101. Р. 3227–3246.
  8. Antonovich K.M. Ispol'zovanie sputnikovyh radionavigacionnyh sistem v geodezii [Tekst]. V 2-h tomah. T. 1. Monografija. GOU VPO «Sibirskaja gosudarstvennaja geodezicheskaja akademija». M.: FGUP «Kartgeocentr». 2005. 334 s. (in Russian).
  9. Interfejsnyj kontrol'nyj dokument. GLONASS – obshhee opisanie sistemy s kodovym razdeleniem signalov; red.1.0. 2016 (in Russian).
  10. GNSS Data Processing. V. I: Fundamentals and Algorithms. ESA TM-23/1. May 2013.
  11. GOST 32453-2017. Global'naja navigacionnaja sputnikovaja sistema. Sistemy koordinat. Metody preobrazovanija koordinat opredeljaemyh tochek (in Russian).
  12. The Receiver Independent Exchange Format. URL: http://acc.igs.org/misc/rinex304.pdf.
  13. Povaljaev A.A., Podkorytov A.N., Nikitin C.A., Filimonova D.V. Algebraicheskie osnovy obrabotki izmerenij pri vysokotochnom absoljutnom mestoopredelenii po signalam GNSS s kodovym razdeleniem kanalov. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2019. T. 6. № 1. S. 9-16 (in Russian).
  14. Teunissen P.J.G., Kleusberg A. (Eds.). GPS for Geodesy. 2nd edition. Springer. 1998.
  15. Perov A.I. GLONASS. Modernizacija i perspektivy razvitija. Radiotehnika. 2020 (in Russian).
Date of receipt: 25.09.2023
Approved after review: 28.09.2023
Accepted for publication: 30.10.2023