350 rub
Journal Radioengineering №11 for 2023 г.
Article in number:
Frequency response corrector
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202311-10
UDC: 621.372
Authors:

A.N. Zikiy1, A.S. Kochubey2, M.S. Litvinov3, A.N. Shurkhovetsky4

1−4 SC «Taganrog Research Institute of Communications» (Taganrog, Russia)

1 zikiy50@mail.ru, 2 l.co4ubey@ya.ru, 3 litvinovm@inbox.ru

Abstract:

For most microwave transistors, hybrid and monolithic microwave amplifiers, the transmission coefficient decreases with increasing frequency. This fundamental property can be explained by the presence of input and output capacitance in the transistor replacement circuit. To equalize the amplitude-frequency response (frequency response) of amplifiers in a wide frequency range, frequency response correctors (equalizers) were proposed. They can be performed on concentrated and distributed elements. A number of domestic and foreign companies are engaged in the production of frequency response correctors, but today the market of electronic components is not saturated in terms of frequency response correctors. The purpose of this work is to study the frequency response corrector of the centimeter range on distributed elements. Modeling and experimental study of the amplitude-frequency response corrector (AFC) have been carried out. The corrector simulation was carried out in the Microwave Office application software package (MWO). The experiment was carried out on a mock-up using a vector analyzer of PNA-L type circuits. As the results of the work are presented: schematic diagram; description of the construction with geometric dimensions; the model of the corrector in MWO; the frequency response of the corrector in MWO; the frequency response of the corrector taken using the layout. The following parameters have been achieved: operating frequency range from 8 to 18 GHz; losses at the maximum frequency of 0.7 ± 0.1 dB; losses at a minimum frequency of 6.8 ± 0.1 dB; wave resistance of 50 ohms; the number of loops is 4. The corrector is recommended to be used in low-noise broadband amplifiers (MSHU), in complex nodes, in receiving and transmitting modules (PPM) of antenna arrays.

Pages: 61-65
For citation

Zikiy A.N., Kochubey A.S., Litvinov M.S., Shurkhovetsky A.N. Frequency response corrector. Radioengineering. 2023. V. 87. № 11. P. 61−65. DOI: https://doi.org/10.18127/j00338486-202311-10 (in Russian)

References
  1. Silvinskaya K.A., Golyshko Z.I. Raschet fazovykh i amplitudnykh korrektorov: Spravochnik. M.: Svyaz. 1980. 104 s. (in Russian)
  2. Kisel V.A. Analogovye i tsifrovye korrektory: Spravochnik. M.: Radio i svyaz. 1986. 184 s. (in Russian)
  3. Grusha A., Krutov A., Rebrov A. Shirokopolosnyi usilitel-korrektor AChKh. SVCh elektronika. 2019. № 1. S. 8−10. (in Russian)
  4. Malyutin N.D., Krasilnikov A.S. Korrektory amplitudnykh i chastotnykh kharakteristik SVCh elektrovakuumnykh priborov. Obzory po elektronnoi tekhnike. Seriya 1. Elektronika SVCh. 1990. 52 s. (in Russian)
  5. Trofimenkov V.V., Khripko V.A. Korrektor AChKh L–diapazona, vypolnennyi na trekhsloinoi strukture. Obshchie voprosy radioelektroniki (Rostov-na-Donu: RNIIRS). 2006. № 2. S. 114−120. (in Russian)
  6. Belousov A.A., Starinova T.V. Sverkhshirokopolosnyi korrektor AChKh ustroistv SVCh diapazona. Materialy 9 Vseros. nauchno-tekhnich. konf. "Obmen opytom v oblasti sozdaniya sverkhshirokopolosnykh RES". Omsk: OmGTU. 2022. S. 51−58. (in Russian)
  7. A.S. SSSR № 1.774.407 Amplitudnyi SVCh korrektor. Kopylov A.F., Rizurenko V.I., Golovanov S.I. Opubl. 7.11.92. B.I. № 41. M.kl. H01p 1/203. (in Russian)
  8. A.S. SSSR № 1.688.312 Korrektor AChKh. Malyutin N.D., Sorokin B.G. Opubl. 30.10.91. B.I. № 40. M.kl. H01p 1/203. (in Russian)
  9. A.S. SSSR № 1.597.979 SVCh korrektor. Nechaev I.G., Porov A.R., Penkov V.M. Opubl. 7.10.90. B.I. № 37. M.kl. H01p 1/203. 1/22. (in Russian)
  10. A.S. SSSR № 1.592.884 Amplitudnyi korrektor. Petrenko V.P. Opubl. 15.09.90. B.I. № 34. M.kl. H01p 1/203. 1/22. (in Russian)
  11. Doperalskii V.V. Razrabotka AChKh-korrektorov LBV-O s uchetom ee amplitudno-fazovogo preobrazovaniya dlya povysheniya identichnosti FChKh shirokopolosnykh usilitelei. Dissertatsiya k.t.n. Saratov: SGU. 2012. (in Russian)
  12. Mikhalchan V.S. Razrabotka i issledovanie algoritmov i ustroistv nastroiki garmonicheskikh korrektorov dlya vysokoskorostnykh sistem svyazi. Dissertatsiya k.t.n. Odessa: OEIS. 1984. 184 s. (in Russian)
  13. Usilitel shirokopolosnyi SD1200 Mod. 12011-65. Planar https://www.tvbs.ru/id/usilitel-shirokopolosnyy-sd1200-mod-1201-65-planar-1277. html (data obrashcheniya 15.04.2023). (in Russian)
  14. Usilitel shirokopolosnyi SU1000 mod. 1100M https://satro-paladin.com/catalog/product/295153/ (data obrashcheniya 15.04.2023). (in Russian)
  15. Razevig V.D., Potapov Yu.V., Kurushin A.A. Proektirovanie SVCh ustroistv s pomoshchyu Microwave Office. M.: Solon-Press. 2003. 496 s. (in Russian)
  16. Kurushin A.A. Proektirovanie SVCh ustroistv V CST STUDIO SUITE: Ucheb. posobie. M.: Solon-Press. 2020. 128 s. (in Russian)
  17. Neganov V.A., Klyuev D.S., Tabakov D.P. Ustroistva SVCh i antenny. Chast 1. Proektirovanie, konstruktivnaya realizatsiya, primery primeneniya ustroistv SVCh. Pod red. V.A. Neganova. M.: LENAND. 2023. 608 s. (in Russian)
Date of receipt: 18.09.2023
Approved after review: 02.10.2023
Accepted for publication: 23.10.2023