350 rub
Journal Radioengineering №10 for 2023 г.
Article in number:
Measuring the signal-to-noise ratio in a discrete communication channel
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202310-16
UDC: 621.396
Authors:

O.V. Chernoyarov1, A.N. Glushkov2, Kaung Myat San3, V.P. Litvinenko4, Y.V. Litvinenko5

1,3 National Research University “MPEI” (Moscow, Russia)

1 National Research Tomsk State University (Tomsk, Russia)

2 Zhukovsky-Gagarin Air Force Academy (Voronezh, Russia)

4,5 Voronezh State Technical University (Voronezh, Russia)

1 chernoyarovov@mpei.ru, 2 al.nk.glushkov@gmail.com, 3 kmyatsan@mail.ru, 4 vl.pt.litvinenko@gmail.com, 5 yu.vl.litvinenko@gmail.com

Abstract:

The task of measuring the signal-to-noise ratio in a working discrete communication channel when transmitting multi-level phase- or frequency-shift keyed signals without distorting the communication system operation is quite relevant, especially if it does not require significant computational costs. To solve it, it is proposed to use the statistical properties of a sampling of the values of the logarithm of the ratio of the amplitudes of the adjacent (current and previous) information symbols at the moment of the end of their reception. It is shown that in the channel with Gaussian noise, these properties are determined by the signal-to-noise ratio only and do not depend on the absolute levels of both signal and noise. Two algorithms for processing sample elements are introduced based on estimating their variance or frequency of exceeding a specified threshold. The necessary calculation ratios are obtained, a statistical simulation of the algorithms for estimating the channel signal-to-noise ratio when receiving a phase-shift keyed signal is carried out, and their accuracy characteristics are found. It is established that the proposed algorithms make it possible to measure the signal-to-noise ratio with the required accuracy at an appropriate sample size. The results of the study can be used both in the design and operation of digital information transmission equipment.

Pages: 158-167
For citation

Chernoyarov O.V., Glushkov A.N., Kaung Myat San, Litvinenko V.P., Litvinenko Y.V. Measuring the signal-to-noise ratio in a discrete communication channel. Radiotekhnika. 2023. V. 87. № 10. P. 5−56. DOI: https://doi.org/10.18127/j00338486-202310-00 (In Russian)

References
  1. Fink L. M. Teorija peredachi diskretnyh soobshhenij. M.: Sovetskoe radio. 1970. 728 s. (in Russian).
  2. Skljar B. Cifrovaja svjaz'. Teoreticheskie osnovy i prakticheskoe primenenie. M.: ID «Vil'jams». 2003. 1104 s. (in Russian).
  3. Prokis D. Cifrovaja svjaz'. M.: Radio i svjaz'. 2000. 800 s. (in Russian).
  4. Pauluzzi D.R., Beaulieu N.C. A comparison of SNR estimation techniques for the AWGN channel. IEEE Transactions on Communications. 2000. V. 48(10). P. 1681–1691. https://doi.org/10.1109/26.871393.
  5. Zhang J., Tan K., Zhao J., Wu H., Zhang Y. A practical SNR-guided rate adaptation. Proceedings of the 27th Conference on Computer Communications (IEEE INFOCOM 2008). Phoenix, AZ, USA, 2008. P. 2083–2091. https://doi.org/10.1109/INFOCOM.2008.274.
  6. Metodika izmerenija otnoshenija signal/shum kanalov s analogovoj i cifrovoj moduljaciej priborami serii IT-08 i mini-IT [Jelektronnyj resurs]. PLANAR: [sajt]. [2015]. URL: – https://planarchel.ru/info/articles/analizatory_tv_signalov/metodika_izmereniya_otnoshe-niya_signal_shum/ (data obrashhenija: 27.06.2023) (in Russian).
  7. Arslan H., Reddy S. Noise power and SNR estimation for OFDM based wireless communication systems. Proceedings of the Third IASTED International Conference on Wireless and Optical Communications (WOC 2003). Banff, Kanada, 2003. V. 3. P. 389–395.
  8. Shao H., Wu D., Li Y., Liu W., Chu X. Improved signal-to-noise ratio estimation algorithm for asymmetric pulse-shaped signals. IET Communications. 2015. V. 9(16). P. 1788–1792. https://doi.org/10.1049/iet-com.2014.1162.
  9. Abeida H. Data-aided SNR estimation in time-variant Rayleigh fading channels. IEEE Transactions on Signal Processing. 2010.
    V. 58(11). P. 5496–5507. https://doi.org/10.1109/TSP.2010.2063429.
  10. Salman T., Badawy A., Elfouly T.M., Khattab T., Mohamed A. Non-data-aided SNR estimation for QPSK modulation in AWGN channel. Proceedings of the 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Larnaca. Cyprus. 2014. P. 611–616. https://doi.org/10.1109/WiMOB.2014.6962233.
  11. Lira de Queiroz W., Brito Teixeira de Almeida D., Madeiro F., Lopes W.T.A. Signal-to-noise ratio estimation for M-QAM signals in η−μ and κ−μ fading channels. EURASIP Journal on Advances in Signal Processing. 2019. V. 20. P. 1–17. https://doi.org/10.1186/s13634-019-0607-7.
  12. Harris F., Dick C. SNR estimation techniques for low SNR signals. Proceedings of the 15th International Symposium on Wireless Personal Multimedia Communications (WPMC 2012). Taipei. Taiwan. 2012. P. 276–280.
  13. Zhanabaev Z.Zh., Akhtanov S.N., Kozhagulov E.T., Karibayev B.A. Determination of signal-to-noise ratio on the base of information-entropic analysis. arXiv:1609.09212 [physics.data-an]. 2016. URL: https://arxiv.org/abs/1609.09212 (data obrashhenija: 27.06.2023). https://doi.org/10.48550/arXiv.1609.09212.
  14. Serkin F.B., Vazhenin N.A., Vejcel' V.V. Sravnitel'nyj analiz algoritmov ocenki otnoshenija signal/shum na osnove kvadraturnyh komponent prinimaemogo signala. Trudy MAI. 2015. Vyp. 83. S. 1-24 (in Russian).
  15. Patent 2341808. № 2007117230/28 (RF). Ustrojstvo izmerenija otnoshenija signal/shum. Legler V.V., Patjukov V.G., Patjukov E.V.; zajavl. 08.05.2077; opubl. 20.12.2008. Bjul. № 35. 7 s. (in Russian).
  16. Chernoyarov O.V., Golpaiegani L.A., Glushkov A.N., Litvinenko V.P., Matveev B.V. Digital binary phase-shift keyed signal detector. International Journal of Engineering, Transactions A: Basics. 2019. V. 32(4). P. 510–518. https://doi.org/10.5829/IJE.2019.32.04A.08.
  17. Chernoyarov O.V., Glushkov A.N., Litvinenko V. P., Litvinenko Y.V., Makarov A.A., Matveev B.V. Digital noncoherent demodulator of four-position differential phase shift keyed signals. Engineering Letters. 2020. V. 28(2). P. 306–311.
  18. Glushkov A.N., Lintvinenko V.P., Matveev B.V., Chernoyarov O.V., Kalashnikov K.S. Digital noncoherent demodulation of the frequency-modulated signals. Applied Mathematical Sciences. 2015. V. 9(139). P. 6925–6934. https://doi.org/10.12988/ams.2015.510664.
  19. Matveeva T.A., Svetlichnaja V.B., Zotova S.A. Teorija verojatnostej: sistemy sluchajnyh velichin i funkcii sluchajnyh velichin. Volgograd: VolgGTU. 2006. 65 s. (in Russian).
  20. Levin B.R. Teoreticheskie osnovy statisticheskoj radiotehniki. Kn. 1. M.: Sovetskoe radio. 1969. 752 s. (in Russian).
  21. Chernoyarov O., Glushkov A., Litvinenko V., Litvinenko Y., Pergamenshchikov S. Signal-to-noise ratio measurement for the signals with constant amplitude. Journal of Physics: Conference Series. 2022. V. 2388. P. 1-11. https://doi.org/10.1088/1742-6596/2388/1/012072.
  22. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov. M.: Nauka. 1970. 720 s.  (in Russian).
  23. Chernoyarov O., Dachian S., Glushkov A., Kaung Myat San, Litvinenko V. The algorithm for the detection of information signals. Journal of Physics: Conference Series. 2022. V. 2388. P. 1-11. https://doi.org/10.1088/1742-6596/2388/1/012073
Date of receipt: 10.05.2023
Approved after review: 17.05.2023
Accepted for publication: 28.09.2023