350 rub
Journal Radioengineering №10 for 2023 г.
Article in number:
The method of GPS monitoring of small-scale inhomogeneities of the ionosphere and its application for predicting the noise immunity of satellite communication systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202310-14
UDC: 621.371.3; 550.388
Authors:

V.P. Pashintsev1, V.A. Tsimbal2, M.V. Peskov3, V.E. Toiskin4

1,3 North Caucasus Federal University (Stavropol, Russia)

2,4 Branch of Military Academy of the Strategic Missile Troops of Peter the Great (Serpukhov, Russia)

1 pashintsevp@mail.ru; 2 tsimbalva@mail.ru; 3 mvpeskov@hotmail.com; 4 vetoiskin@mail.ru

Abstract:

A method has been developed for GPS monitoring of small-scale fluctuations in the total electronic content of the ionosphere and using its results to predict changes in the noise immunity of satellite communication systems under ionospheric disturbances. To this end, the software of the GPStation-6 receiver of the global navigation satellite system was modified in the direction of replacing the code measurements of the total electronic content of the ionosphere with combined (code-phase) measurements, which practically eliminates the "noise" component of the measurement error. To separate small-scale fluctuations of the total electronic content from large-scale ones, it is proposed to use a 6th-order digital Butterworth filter, which in the transmission frequency range (1-10 Hz) at a sampling frequency of 50 Hz provides an amplitude-frequency response close to ideal and introduces a delay not exceeding the permissible value. An expression is obtained for calculating the output samples of this digital filter. The obtained results of estimating small-scale fluctuations of the total electron content of the ionosphere at the output of the digital filter allow us to estimate the standard deviation of these fluctuations. On this basis, the results of calculating the ionospheric flicker index of the received signals of satellite communication systems are obtained. This makes it possible to predict the probability of their erroneous reception at a given average value of the signal-to-noise ratio at the input of the satellite receiver. Analysis of the obtained results of predicting the noise immunity of satellite communication systems shows that in the conditions of an undisturbed mid-latitude ionosphere, the probability of erroneous reception may exceed the permissible value for 30 seconds. This confirms the assumption that with small-scale disturbances of the ionosphere, the probability of error in satellite communication systems may exceed the permissible value for a long time.

Pages: 131-146
For citation

Pashintsev V.P., Tsimbal V.A., Peskov M.V., Toiskin V.E. The method of GPS monitoring of small-scale inhomogeneities of the ionosphere and its application for predicting the noise immunity of satellite communication systems. Radiotekhnika. 2023. V. 87. № 10.
P. 131−146. DOI: https://doi.org/10.18127/j00338486-202310-14 (In Russian)

References
  1. Gundze E., Chzhaohan' Lju. Mercanija radiovoln v ionosfere. TIIJeR. 1982. T. 70. № 4. S. 5-45. (in Russian).
  2. Krejn R.K. Mercanija radiovoln v ionosfere. TIIJeR. 1977. T. 65. № 2. S. 5-29. (in Russian).
  3. Aarons Dzh. Global'naja morfologija ionosfernyh mercanij. TIIJeR. 1982. T. 70. № 4. S. 45-66. (in Russian).
  4. Devis K. Radiovolny v ionosfere. M.: Mir. 1973. 502 s. (in Russian).
  5. Maslov O.N., Pashincev V.P. Modeli transionosfernyh radiokanalov i pomehoustojchivost' sistem kosmicheskoj svjazi. Prilozhenie k zhurnalu «Infokommunikacionnye tehnologii». Vyp. 4. Samara: PGATI. 2006. 357 s.  (in Russian).
  6. Pashintsev V.P., Peskov M.V., Kalmykov I.A., Zhuk A.P., Toiskin V.E. Method for forecasting of interference immunity of low frequency satellite communication systems. AD ALTA-Journal of interdisciplinary research. 2020. V. 10. № 1. P. 367-375. (in Russian).
  7. Pashincev V.P, Sapozhnikov A.D., Vititlov L.L. Analiticheskaja metodika ocenki vlijanija ionosfery na pomeho-ustojchivost' sistem kosmicheskoj svjazi. Radiotehnika. 1991. № 11. S. 80-83. (in Russian).
  8. Ryzhkina T.E., Fedorova L.V. Issledovanie staticheskih i spektral'nyh transatmosfernyh radiosignalov UKV-SVCh-diapazona. Zhurnal radiojelektroniki. 2001. № 2. C. 16. (in Russian).
  9. Afrajmovich Je.L., Perevalova N.P. GPS-monitoring verhnej atmosfery Zemli. Irkutsk: GU NC VSNC SO RAMN. 2006. 480 s. (in Russian).
  10. Perevalova N.P. Ocenka harakteristik nazemnoj seti priemnikov GPS/GLONASS, prednaznachennoj dlja monitoringa ionosfernyh vozmushhenij estestvennogo i tehnogennogo proishozhdenija. Solnechno-zemnaja fizika. 2011. № 19. S. 124-133. (in Russian).
  11. Afrajmovich Je. L., Karachencev V.A. Issledovanie interferencionnyh jeffektov pri prieme signalov navigacionnoj sistemy GPS. Radiotehnika. 2004. № 8. S. 31-35. (in Russian).
  12. Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Ch. 2. Sluchajnye polja. M.: Nauka. 1978. 463 s. (in Russian).
  13. Cimbal V.A., Peskov M.V., Chipiga A. F., Pashincev V.P. Povyshenie tochnosti prognozirovanija pomehoustojchivosti sistem sputnikovoj radiosvjazi po dannym monitoringa indeksa ionosfernyh mercanij. Sb. trudov 23-j Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». V 2-h tomah. T. 2. Voronezh: Izd-vo «Nauchno-issledovatel'skie publikacii» (OOO «VJeLBORN»). S. 575-582 (in Russian).
  14. Shanmugam S., Jones J., MacAulay A., Van Dierendonck A.J. Evolution to Modernized GNSS Ionoshperic Scintillation and TEC Monitoring. Proceedings of IEEE/ION PLANS. 2012. Р. 265-273.
  15. GPStation-6. GNSS Ionospheric Scintillation and TEC Monitor (GISTM) Receiver User Manual. 2012. Source: https://hexagon-downloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000132/om-20000132.pdf.
  16. Carrano C., Groves K. The GPS Segment of the AFRL-SCINDA Global Network and the Challenges of Real-Time TEC Estimation in the Equatorial Ionosphere. Proceedings of ION NTM. 2006. Р. 1036-1047.
  17. Pashincev V.P., Peskov M.V., Parfent'ev A.A., Ljagin M.A. Metodika opredelenija statisticheskih harakteristik melko-masshtabnyh fluktuacij polnogo jelektronnogo soderzhanija ionosfery. Sb. dokladov Mezhdunar. konf. «Radio-jelektronnye ustrojstva i sistemy dlja infokommunikacionnyh tehnologij» (RJeUS-2018). Ser. Nauchnye konferencii, posvjashh. Dnju Radio. Vyp. LXXIII. M.: OOO «Bris-M».
    S. 29-33 (in Russian).
  18. Pashincev V.P., Peskov M.V., Smirnov V.M., Smirnova N.V., Tynjankin S.I. Metodika vydelenija melkomasshtabnyh variacij polnogo jelektronnogo soderzhanija ionosfery po dannym transionosfernogo zondirovanija. Radiotehnika i jelektronika. 2017. T. 62. № 12.
    S. 1182-1189 (in Russian).
  19. OEM6. Firmware Reference Guide. 2014. Source: https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Docu-ments/Ma-nuals/om-20000129/om-20000129.pdf.
  20. Vvedenie v cifrovuju fil'traciju. Pod red. R. Bognera i A. Konstantinidisa. M: Mir. 1976. 216 s. (in Russian)
  21. Filter Designer. The MathWorks, Inc. Source: https://www.mathworks.com/help/signal/ref/filterdesigner-app.html.
  22. Pashincev V.P., Ahmadeev R.R. Prognozirovanie pomehoustojchivosti sistem sputnikovoj svjazi i navigacii po dannym GPS-monitoringa ionosfery. Jelektrosvjaz'. 2015. № 11. S. 58-65.
Date of receipt: 17.07.2023
Approved after review: 20.07.2023
Accepted for publication: 28.09.2023