E.V. Ovchinnikova1, S.G. Kondratieva2, P.A. Shmachilin3, Nguen Dinh To4, T.A. Trofimova5, E.V. Gadzhiev6
1-6 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1 Moscow State Technical University named after N.E. Baumana (National Research University) (Moscow, Russia)
2,3 Peoples Friendship University of Russia (Moscow, Russia)
6 JSC “VNIIEM Corporation” (Moscow, Russia)
The target information transmission radio line is used both as part of large spacecraft and as part of small spacecraft of any purpose.
In this article, the on-board antenna system of the target information transmission radio line has been considered.
A stepped polarizer is selected as the radiator, which is usually built on the basis of standard waveguides. At the initial stage of development, the WR-112 waveguide was selected as the basis.
In the course of working, the electrodynamic modeling of a polarizer with a linear partition and waveguide excitation was performed, during which the following parameters were estimated: the standing wave coefficient, the directional pattern and the dependence of the elliptic coefficient on the angular coordinate in the azimuthal plane.
Then an electrodynamic simulation of a coaxial-excited waveguide radiator with a partition was performed, during which the following parameters were estimated: the standing wave coefficient, the directional pattern and the dependence of the elliptic coefficient on the angular coordinate in the azimuthal plane.
Further, an electrodynamic simulation of a coaxial-excited waveguide radiator with a stepped partition was performed, during which the following parameters were estimated: the standing wave coefficient, the directional pattern and the dependence of the elliptic coefficient on the angular coordinate in the azimuthal plane.
The considered waveguide radiators have the required directional characteristics and frequency characteristics, but their common disadvantage is a relatively large length, which makes it difficult to use them as on-board antennas for small spacecraft.
Therefore, there is a need to minimize the longitudinal dimensions of the antenna, whereby an option of using a radiator with a combined decelerating system in the form of a linear or stepped partition and two projections with an exponential envelope is proposed.
Electrodynamic modeling of such a radiator has been performed, the standing wave coefficient, the directional pattern, the directional action coefficient and the elliptic coefficient from the azimuthal angular coordinate have been estimated.
Thus, the design of a waveguide radiator with a combined retarding system has been developed, which allows reducing its length by half compared to similar radiators on a square waveguide with a linear or stepped metal retarding system. It has been shown that for the same length, a stepped partition provides better matching in the operating frequencies than a linear one. The polarization characteristics and directivity characteristics for a radiator with a linear and a stepped partition have been determined. It has been shown that the elliptic coefficient exceeds 0.7 in the sector of angles (-70°,70°) in the azimuthal plane. The polarization characteristics meet the requirements for on-board satellite communication antenna systems.
On the basis of such a radiator, an electrodynamic simulation of a waveguide antenna array of eight elements with a linear partition and protrusions was performed. The standing wave coefficient, spatial directional patterns of the antenna array of waveguide radiators with a linear partition and the dependence of the elliptic coefficient on the angular coordinate in the azimuthal plane are obtained and estimated.
Ovchinnikova E.V., Kondratieva S.G., Shmachilin P.A., Nguen Dinh To, Trofimova T.A., Gadzhiev E.V. On-board antenna array for high-speed radio line of advanced spacecraft. Radiotekhnika. 2023. V. 87. № 1. P. 126−143. DOI: https://doi.org/10.18127/j00338486-202301-10
(In Russian)
- Gutkin L.S. Proektirovanie radiosistem i radioustrojstv. M.: Radio i svjaz'. 1986. 288 s. (in Russian).
- Zaharenko A.B., Fedotov A.Ju., Gadzhiev Je.V., Telepnev P.P. Perspektivy razvitija bortovoj antennoj sistemy kosmicheskih apparatov serii «Meteor-M». Voprosy jelektromehaniki. Trudy VNIIJeM. 2021. T. 182. №3. S. 19-23 (in Russian).
- Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A. i dr. Antennye sistemy radiolinii peredachi informacii kosmicheskih apparatov: sostojanie i perspektivy razvitija. Radiotehnika. 2021. T. 85. № 3. S. 86-95. DOI 10.18127/j00338486-202103-09 (in Russian).
- Bahtin A.A., Omel'janchuk E.V., Semenova A.Ju. Analiz sovremennyh vozmozhnostej organizacii sverhvysokoskorostnyh sputnikovyh radiolinij. Trudy MAI. 2017. № 96 (in Russian).
- Bekrenev O.V., Goncharov A.K., Martynov S.I. Antennye sistemy priemnyh kompleksov dlja osnashhenija priemnyh stancij ETRIS. Materialy konf. «Iosif'janovskie chtenija – 2017». 26 oktjabrja 2017. S. 240–241 (in Russian).
- Gadzhiev E., Generalov A., Zhukov A., et al. Application of spiral antennas for perspective vehicle-board systems and complexes. Proc. 5th International Conference on Engineering and Telecommunication (EnT-MIPT - 2018). Moscow. 2018. P. 91-93. DOI: 10.1109/EnT-MIPT.2018.00027.
- Gadzhiev E., Generalov A., Salikhov M., et al. Application of dipole antennas for perspective vehicle-board systems and complexes. 2019 International Conference on Engineering and Telecommunication (EnT 2019). Dolgoprudny. 2019. P. 9030543. DOI: 10.1109/EnT47717.2019.9030543.
- Ovchinnikova E., To N.D., Kondrat'eva S., et al. Application of horn antennas for perspective vehicle-board systems and complexes. 2020 International Conference Engineering and Telecommunication (En and T 2020). Dolgoprudny. 2020. P. 9431308. DOI: 10.1109/EnT50437.2020.9431308.
- Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A., Nguen Din' To, Trofimova T.A., Gadzhiev Je.V. Antennye sistemy radiolinii peredachi informacii kosmicheskih apparatov: puti postroenija. Radiotehnika. 2022. T. 86. № 6. S. 109–128. DOI: https://doi.org/10.18127/j00338486-202206-14 (in Russian).
- Davis D., Digiondomenico O.J., Kempic J.A. A new type of circularly polarized antenna element. IEEE Group on Antennas and Propagation Int. Symp. Dig. 1967. V. 5. P. 26–33.
- Chahat N., Decrossas E., Gonzalez-Ovejero D., Yurduseven O., Radway M., Hodges R., Estabrook P., Baker J., Bell D., Cwik T., Chattopadhyay G. Advanced CubeSat Antennas for Deep Space and Earth Science Missions: Areview. IEEE Antennas and Propagation Magazine. 2019. V. 61, № 5. Р. 37–46.
- Dvurechenskij V.D., Telepnev P.P., Fedotov A.Ju. Linejnaja antenna s jellipticheskoj poljarizaciej dlja kosmicheskih apparatov. Voprosy jelektromehaniki. Trudy VNIIJeM. 2017. T. 161. № 6. S. 17-19 (in Russian).
- Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A. i dr. Malogabaritnyj volnovodnyj izluchatel'. Sb. tezisov VIII Mezhdunar. konf. «Inzhiniring i telekommunikacii» (En&T 2021). M.-Dolgoprudnyj: Moskovskij fiziko-tehnicheskij institut (nacional'nyj issledovatel'skij un-t). 2021. S. 59-62 (in Russian).
- Ovchinnikova E.V., Kondrat'eva S.G., Shmachilin P.A. i dr. Modelirovanie antennoj reshetki iz volnovodnyh izluchatelej na osnove septum-poljarizatorov. Radiotehnika. 2021. T. 85. № 4. S.108-118. DOI 10.18127/j00338486-202104-12 (in Russian).
- Ovchinnikova E., Gadzhiev E., To N.D., et al. Modelling of a Small-Sized Waveguide Radiator with Elliptical Polarization. 2021 International Conference Engineering and Telecommunication (En and T 2021). Dolgoprudny. 2021. DOI: 10.1109/En-T50460.2021.9681739.
- Rud' L.A., Shpachenko K.S. Jelektrodinamicheskaja model' i harakteristiki poljarizatorov na otrezkah kvadratnogo volnovoda s diagonal'no raspolozhennymi kvadratnymi vystupami. Radiofizika i jelektronika. 2012. T. 3(17). № 1. S. 3-10 (in Russian).
- Dvurechenskij V.D., Telepnev P.P., Fedotov A.Ju. Sputnikovaja antenna s jellipticheskoj poljarizaciej. Voprosy jelektromehaniki. Trudy VNIIJeM. 2013. T. 134. № 3. S. 27-30 (in Russian).
- Fam Van Vin'. Dvuhdiapazonnaja antenna sistemy sputnikovogo televidenija: Avtoref. diss. … kand. tehn. nauk. Kazan'. 2019. 114 s. (in Russian).
- Nguen Din' To, Ovchinnikova E.V., Trofimova T.A., Kondrat'eva S.G. Modelirovanie linejnoj antennoj reshetki iz izluchatelej na osnove malogabaritnogo volnovodnogo poljarizatora s vystupami i linejnoj peregorodkoj. Tezisy 20-j Mezhdunar. konf. «Aviacija i kosmonavtika». M.: Iz-vo «Pero». 2021. S. 321–322 (in Russian).
- Voskresenskij D.I., Ovchinnikova E.V. Monoimpul'snye harakteristiki fazirovannyh antennyh reshetok s shirokougol'nym skanirovaniem. V kn.: Avionika 2002-2004. Sbornik statej. Pod red. A.I. Kanashhenkova. M.: Radiotehnika. 2005. 560 s. (in Russian).
- Voskresenskij D.I., Ovchinnikova E.V. Sintez kol'cevyh koncentricheskih antennyh reshetok. V kn.: Avionika 2002-2004. Sbornik statej. Pod red. A.I. Kanashhenkova. M.: Radiotehnika. 2005. 560 s. (in Russian).
- Voskresenskij D.I., Kotov Ju.V., Ovchinnikova E.V. Tendencii razvitija shirokopolosnyh fazirovannyh antennyh reshetok. Antenny. 2005. № 11(102) (in Russian).
- Voskresenskij D.I., Gus'kov Ju.N., Kotov Ju.V., Ovchinnikova E.V. Antennye reshetki. Sostojanie. Perspektivy razvitija. Fazotron. 2006. №1-2(4) (in Russian).
- Gadzhiev E.V., Ovchinnikova E.V., Kondratieva S.G., Smachilin P.A. On-Board X-Band Antenna Array. 2022 Systems of Signals Generating and Processing in the Field of on Board Communications (SOSG 2022 - Conference Proceedings). Moscow. 2022. DOI: 10.1109/IEEECONF53456.2022.9744339 (in Russian).