350 rub
Journal Radioengineering №1 for 2023 г.
Article in number:
Features of the use of volumetric holograms in photonic devices of telecommunication systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202301-09
UDC: 535.4(076.5)
Authors:

A.G. Prygunov1

1 FRPC «RNIIRS», FSBEI HE DSTU (Rostov-on-Don, Russia)

Abstract:

New scientific and technical challenges in the development of telecommunication systems determine the need for new scientific and technical approaches to solve them. The analysis of technical literature and guidance documents defining the prospects for the development of telecommunication systems indicate the relevance of the development and practical use of photonic telecommunication devices in these systems. Telecommunication devices using photonics provide higher performance, a larger dynamic range, both in frequency and in the level of the information signal, reduced power consumption and noise level, the possibility of variation of parameters and characteristics of signals in a wide dynamic range of values. One of the ways to improve the technical characteristics of photonic devices is the use in their design of volumetric holograms exposed using two counter spherical waves.

As informative parameters of the luminous flux in radiophotonics devices, the intensity, frequency, phase and direction of propagation of this luminous flux are used. To analyze the frequency, phase and direction of propagation of the signal light flux, the method of interference of this light flux with a coherent reference light flux is used. The greatest sensitivity and accuracy of optical interferometric measurements are provided when using holographic interferograms. The task of improving the technical characteristics and expanding the functionality of photonic telecommunication devices through the use of holography technologies in their designs is urgent. At the same time, a separate place is occupied by the task of constructing photonic devices with volumetric holograms exposed using two counter spherical waves. The use of volumetric holograms in photonic telecommunication devices depends on the physical properties of these holograms, which determine the nature of their interaction with a coherent light stream.Significant physical properties of such holograms are: channeling by a volumetric hologram of the energy of the luminous flux with its frequency and spatial selection; the possibility of shifting the searchlight zone of the interferogram formed in the emulsion plane of the volumetric hologram away from the optical axes of the light streams forming this interferogram.

The first of these physical properties is due to the nature of the diffraction of the light flux on the diffraction grating in the form of a three-dimensional hologram strata. Analysis of the nature of the distribution of the energy of the luminous flux in the searchlight zone of the volumetric hologram shows that an increase in the radius of the spot of light beyond the central part of the searchlight zone causes only a slight increase in this area of the total energy of the optical field diffracted from the volumetric hologram. Inside the ring of light with a radius 1.6 times larger than the radius of the central spot of light of the searchlight zone, up to 90% of the energy of the diffracted light flux is concentrated, the intensity of which decreases outside the central spot of the searchlight zone according to the cubic law, as a function of the image radius. Analysis of the properties of the frequency and spatial selectivity of the volumetric hologram allows us to conclude that, when constructing a telecommunications photonic device with a volumetric hologram in its design, it is necessary to use narrow beams of light that coincide with one of the directions of optimal reconstruction of the optical field exposed on it by a volumetric hologram.

The second of these significant physical properties is due to the influence of the direction of propagation of the light flux diffracted from the volumetric hologram, the angle of inclination of the stratum to the surface of the emulsion of the volumetric hologram and the refractive index of this emulsion, taking into account the difference in the optical density of the air and the emulsion material.When diffraction of light on a volumetric hologram, in addition to the angle of rotation of the diffracted light stream from it, due to the angle of inclination of the strata relative to the surface of the hologram, an additional angle of rotation of the diffracted light stream arises due to differences in the refractive indices of the medium (air) and the emulsion of the volumetric hologram.

In the practical use of volumetric holograms in the design schemes of holographic photonic devices of telecommunication systems, it is necessary to take into account the significant physical properties of these holograms.

A review analysis of the features of the use of volumetric holograms in photonic telecommunication devices allows us to conclude that accurate accounting of all the characteristics of a volumetric hologram is difficult and makes the design of a photonic device with its use much more complex. This is due to the difficulty of accurately assessing and specifying the diffraction efficiency of such a hologram and the shrinkage of its emulsion material during exposure.The inclusion of the diffraction efficiency parameter in the process of modeling the tracing of light rays in the design of a photonic device with a volumetric hologram makes it possible to simulate holographic images and provides the possibility of optimizing the design parameters of this device.

Pages: 116-125
For citation

Prygunov A.G. Features of the use of volumetric holograms in photonic devices of telecommunication systems. Radiotekhnika. 2023. V. 87. № 1. P. 116−125 DOI: https://doi.org/10.18127/j00338486-202301-09 (In Russian)

References
  1. Mezhvedomstvennaja programma issledovanij i razrabotok v oblasti fotoniki na 2017-2020 gody. Razrabotana na osnovanii Protokola zasedanija prezidiuma Soveta pri Prezidente RF po modernizacii jekonomiki i innovacionnomu razvitiju Rossii ot 9 ijulja 2014 g. № 4 (in Russian).
  2. Belkin M.E., Kudzh S.A., Sigov A.S. Novye principy postroenija radiojelektronnoj apparatury SVCh-diapazona s ispol'zovaniem radiofotonnoj tehnologii. Rossijskij tehnologicheskij zhurnal. 2016. № 1(10). S. 4-20 (in Russian).
  3. Prygunov A.G. Fizicheskie osnovy ispol'zovanija golograficheskogo interferometra v fotonnyh telekommunikacionnyh ustrojstvah. Radiotehnicheskie i telekommunikacionnye sistemy. 2021. № 2. S. 42-48 (in Russian).
  4. Prygunov A.G. Fizicheskie osnovy ispol'zovanija ob’emnyh otrazhatel'nyh gologramm v ustrojstvah radiofotoniki. Jelektrosvjaz'. 2021. № 8. S. 54-59 (in Russian).
  5. Gabrijel'jan D.D., Demchenko V.I., Karavaev S.V., Mihajlov N.A., Prygunov A.G. Trakt formirovanija upravljajushhego signala golograficheskoj sistemy avtomaticheskoj regulirovki usilenija i ego modelirovanie. Radiotehnika. 2019. T. 83. № 7(9). S. 215-221 (in Russian).
  6. Sidorov A.I. Osnovy fotoniki: fizicheskie principy i metody preobrazovanija opticheskih signalov v ustrojstvah fotoniki. Uchebnoe posobie. SPb: FGBOU VPO «SPB NIU ITMO». 2014. 148 s (in Russian).
  7. Cvetkov A.Ju., Prygunov A.G., Anikejchik N.D., Rybalko I.P., Osipov N.A. Analogo-cifrovoe preobrazovanie signalov s uglovoj manipuljaciej dlja programmno-opredeljaemyh radiosistem. Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2016. T. 16. № 3. S. 402–408. DOI: 10.17586. 2226-1494-2016-16-3-402-408 (in Russian).
  8. Butikov E.I. Optika: Ucheb. posobie dlja vuzov. Pod red. N.I. Kaliteevskogo. M.: Vysshaja shkola. 1986. 512 s (in Russian).
  9. Rodionov S.A. Osnovy optiki. SPb: GITMO. 2000. 364 s (in Russian).
  10. Miler M. Golografija: Per. s chesh. A.S. Sudarushkina, V.I. Lusnikova. L.: Mashinostroenie. Leningr. otd-e. 1979. 207 s (in Russian).
  11. Denezhkin E.N. Opticheskaja golografija: Ucheb. posobie. Novosibirsk: Izd-vo NGTU. 2002. 93 s (in Russian).
  12. Dudenkova V.V. Opticheskaja golografija: Ucheb. posobie. Nizhnij Novgorod: Nizhegorodskij gos. un-t. 2015. 55 s (in Russian).
  13. Bezuglov D.A., Prygunov A.G., Trepachev V.V. Analiz difrakcii sveta na jetalonnoj gologramme pri izmerenii peremeshhenij ob#ektov prostranstvenno-spektral'nym metodom. Avtometrija SO RAN. 1998. № 5. S. 21-28 (in Russian).
  14. Prygunov A.G., Prygunov A.A., Trepachjov V.V., Trepachjova A.V. Uvelichenie plotnosti jenergii informacionnogo polja opticheskogo interferometra difrakcionnym golograficheskim metodom. Materialy 4-j mezhdunar. nauch. konf. «Sovremennye problemy radiojelektroniki». Rostov-na-Donu: RIO RTIST FGBOU VPO «JuRGUJeS». 2012. S. 178-181 (in Russian).
  15. Denezhkin E.N. Opticheskaja golografija: Ucheb. posobie. Novosibirsk: Izd-vo NGTU. 2002. 93 s (in Russian).
  16. Golubenceva L.I., Rjabuho V.P., Perepelicyna O.A. Opticheskaja golografija. Special'nyj opticheskij praktikum. Saratov: Izd-vo GOU VPO SGU. 2009. 115 s (in Russian).
Date of receipt: 02.11.2022
Approved after review: 10.11.2022
Accepted for publication: 27.12.2022