350 rub
Journal Radioengineering №1 for 2023 г.
Article in number:
Methods of target detection in automotive radar under the conditions of the exposure to active interference
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202301-07
UDC: 621.396.6
Authors:

V.T. Ermolaev1, V.Yu. Semenov2, A.G. Flaxman3

1-3 Nizhni Nivgorod State University n.a. N.I. Lobachevsky (Nizhni Nivgorod, Russia)

Abstract:

Formulation of the problem. The paper considers the problem of simultaneous detection of near and far targets in a millimeter wave automotive radar under the influence of active interference. The probing signals of similar radars installed on oncoming and passing vehicles act as active interference. Two methods are proposed to solve this problem. The first one performs interference cancellation in the frequency domain, and the second one is based on the maximum likelihood estimate of the radio channel and performs interference cancellation in the time domain.

Goal. Propose the structure of an automobile radar and processing algorithms that allow simultaneous detection of near and far targets under the influence of active interference.

Results. The effectiveness of two proposed digital signal processing methods for solving this problem is shown. The first method performs noise cancellation in the frequency domain. The second method is based on the maximum likelihood estimate of the radio channel and performs interference cancellation in the time domain. An original algorithm for estimating the detection threshold for both interfering and non-interfering targets is proposed, which has a low computational complexity.

Practical significance. Both proposed methods have low computational complexity and do not require direct matrix inversion, which makes it possible to use these algorithms in the software of digital signal processors and programmable logic integrated circuits. Numerical modeling was carried out, which showed the high efficiency of the proposed methods in terms of the probability of simultaneous detection of near and far targets with a low level of false alarms.

Pages: 73-87
For citation

Ermolaev V.T., Semenov V.Yu., Flaxman A.G. Methods of target detection in automotive radar under the conditions of the exposure to active interference. Radiotekhnika. 2023. V. 87. № 1. P. 73−87. DOI: https://doi.org/10.18127/j00338486-202301-07 (In Russian)

References
  1. Richards M. Fundamentals of Radar Signal Processing. McGraw-Hill, New York. 2nd edition. 2014.
  2. Wang W., Liang D., Wang Z., Yu H. Design and implementation of a FPGA and DSP based MIMO radar imaging system. Radio-engineering. June 2015. V. 24(2). Р. 518-526.
  3. Shi W., Huang J., He Ch. 2D angle and doppler frequency estimation in MIMO radar. Proceedings of the World Congress on Engineering and Computer Science. San Francisco, USA. 2011. V. 1.
  4. Hasch J., Topak, E., Schnabel R., Zwick T., Weigel R. Fellow and Waldschmidt Ch. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE transactions on microwave theory and techniques. 2012. V. 60. № 3. Р. 845-860.
  5. Meinl F. Signal Processing Architectures for Automotive High-Resolution MIMO Radar Systems. Leibniz University Hannover. Ph.D dissertation. 2020. 191 p.
  6. Lutz S., Ellenrieder D., Walter T., Weigel R. On fast chirp modulations and compressed sensing for automotive radar applications. Proc. 15th Int. Radar Symp. (IRS). June 2014. Р. 1–6.
  7. Aydogdu C., Carvajal G.K., Eriksson O., Hellsten H., Herbertsson H., Keskin M.F., Nilsson E., Rydstrom M., Vanas K., Wymeersch H. Radar Interference Mitigation for Automated Driving. IEEE Signal Processing Magazine. Special Issue on Automous Driving. 2019. Р. 1-21.
  8. Ristea N.-C., Anghel A., Ionescu R.T., Eldar Y.C. Automotive Radar Interference Mitigation with Unfolded Robust PCA based on Residual Overcomplete Auto-Encoder Blocks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2021. Р. 3203-3208. DOI: 10.1109/CVPRW53098.2021.00358.
  9. Alland S., Stark W., Ali M., Hegde M. Interference in Automotive Radar Systems: Characteristics, Mitigation Techniques, and Current and Future Research. IEEE Signal Processing Magazine. Sept. 2019. V. 36. № 5. Р. 45-59. DOI: 10.1109/MSP.2019.2908214.
  10. Umehira M., Nozawa T., Makino Y., Wang X., Takeda S., Kuroda H. A novel iterative inter-radar interference reduction scheme for densely deployed auto. A motive FMCW radars. in Proc. 19th Int. Radar Symp. (IRS). 2018. Р. 1–10. DOI: 10.23919/IRS.2018.8448223.
  11. Jin F, Cao. S. Automotive Radar Interference Mitigation using Adaptive Noise Canceller. IEEE Transactions on Vehicular Technology. 2019. DOI:10.1109/tvt.2019.2901493.
  12. Feger R., Wagner C., Schuster S., Scheiblhofer S., Jager H., Stelzer A. A 77-GHz FMCW MIMO Radar Based on an SiGe Single-Chip Transceiver. IEEE Transactions on Microwave Theory and Techniques. May 2009. V. 57. № 5. Р. 1020-1035.
  13. Rao S. MIMO radar. Texas Instruments Radar Application Report SWRA554A. 2017 May. 13 p.
  14. Bergin J., Guerci J. MIMO radar. Theory and application. Artech House. 2018. 230 p.
  15. Cacin A.A., Murashov G.A. K voprosu o poiske posledovatel'nostej De Brejna. Cloude of science. 2019. T. 6. № 2. S. 276–286 (In Russian).
  16. Ermolaev V.T., Semenov V.Ju., Flaksman A.G., Artjuhin I.V., Shmonin O.A. Metod formirovanija virtual'nyh priemnyh kanalov v avtomobil'nom MIMO-radare. Radiotehnika. 2021. T. 85. № 7. S. 115-126 (In Russian).
  17. Artjuhin I.V., Ermolaev V.T., Semenov V.Ju., Flaksman A.G., Shmonin O.A. Dvumernaja pelengacija so sverhrazresheniem v avtomobil'nom MIMO radare v uslovijah korrelirovannosti celej. Jelektrosvjaz'. 2022. № 8. S. 45-52 (In Russian).
  18. Semenov V.Ju., Podkopaev A.A. Metod stepennyh vektorov dlja podavlenija pomeh v MIMO-radare. Jelektromagnitnye volny i jelektronnye sistemy. 2019. № 4. S. 5-13 (In Russian).
  19. Semenov V.Ju., Podkopaev A.A. Podavlenie impul'snyh shirokopolosnyh pomeh adaptivnym fil'trom, osnovannym na metode stepennyh vektorov. Jelektromagnitnye volny i jelektronnye sistemy. 2020. № 4. S. 46-55 (In Russian).
  20. Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki: Vvedenie v teoriju: Per. s angl. M.: Radio i svjaz'. 1986. 448 c. (In Russian).
  21. Godara L.C. Smart antennas. CRC Press. 2004. 472 p.
  22. Ermolaev V.T., Flaksman A.G. Teoreticheskie osnovy obrabotki signalov v besprovodnyh sistemah svjazi. N. Novgorod: Izd-vo Nizhegorodskogo gosudarstvennogo un-ta. 2011. 368 s. (In Russian).
  23. Gantmaher F.R. Teorija matric. M.: Nauka. 1988. 552 s. (In Russian).
Date of receipt: 02.11.2022
Approved after review: 10.11.2022
Accepted for publication: 27.12.2022