350 rub
Journal Radioengineering №1 for 2023 г.
Article in number:
Estimation of information system approximation to the Shannon limit by applying signals optimized according to the criterion of maximum band energy concentration
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202301-01
UDC: 621.391
Authors:

A.S. Ovsyannikova1, S.B. Makarov2, S.V. Zavjalov3, S.V. Volvenko4

1-4 Peter The Great St. Petersburg Polytechnic University (Saint-Petersburg, Russia)

Abstract:

Formulation of the problem. It is possible to achieve specific data rates equal to 10-15 (bps)/Hz with minimal energy losses (no more than 3-4 dB) by using optimal spectrally efficient signals with controlled intersymbol interference. This will allow data transfer at a speed 3-4 times higher than the Nyquist barrier.

The goal is to obtain quantitative results of approaching the Shannon boundaries of the spectral and energy efficiency of an information system that uses single-frequency M-ary signals optimized according to the criterion of maximum band energy concentration with increased signal constellation sizes, providing minimal energy losses for coherent element-by-element detection.

Results. The use of optimal signals obtained in accordance with the criterion of maximum energy concentration in the occupied frequency band allows obtaining high spectral and energy efficiency of the information system. It is shown that the spectral efficiency of 11.4 (bit/sec)/Hz is achieved by using optimal signals with quadrature amplitude modulation and the volume of the channel alphabet M=1024. It is shown that the use of new spectrally efficient optimal signals provides a significant approximation of the information system to the Shannon boundaries. With signals obtained as a result of using the criterion of 85% energy concentration in the frequency band, it is shown that the spectral efficiency of 11.4 (bit/sec)/Hz is inferior to the Shannon boundary by only 2% at Eb/N0=24.5 dB for signals with cross-correlation coefficient K0=0.01. When synthesizing the shape of the optimal amplitude pulses, depending on the choice of the signal energy concentration criterion in the occupied frequency band at different values of the cross-correlation coefficient K0=0.01 and K0=0.1, it is shown that the change in the shape of the optimal amplitude pulse depends very little on the choice of the band energy concentration criterion (99% or 85%).

Practical significance. The proposed optimal signals can be used in the modification of digital broadcasting and television in the direction of increasing the data rate without increasing the bandwidth of the occupied frequencies.

Pages: 5-22
For citation

Ovsyannikova A.S., Makarov S.B., Zavjalov S.V., Volvenko S.V. Estimation of information system approximation to the Shannon limit by applying signals optimized according to the criterion of maximum band energy concentration. Radiotekhnika. 2023. V. 87. № 1.
P. 5−22. DOI: https://doi.org/10.18127/j00338486-202301-01 (In Russian)

References
  1. Mazo J.E. Faster-than-nyquist signaling. The Bell System Technical Journal. Oct. 1975. V. 54. № 8. Р. 1451-1462. DOI: 10.1002/j.1538-7305.1975.tb02043.x.
  2. Liveris D., Georghiades C.N. Exploiting faster-than-Nyquist signaling. IEEE Transactions on Communications. Sept. 2003. V. 51. № 9.
    Р. 1502-1511. DOI: 10.1109/TCOMM.2003.816943.
  3. Gelgor А., Gelgor T. New Pulse Shapes for Partial Response Signaling to Outperform Faster-than-Nyquist Signaling. 2019 IEEE
    Inter-national Conference on Electrical Engineering and Photonics (EExPolytech). 2019. Р. 144-148.
    DOI: 10.1109/EExPolytech.2019.8906884.
  4. Nguen V.F., Gorlov A.I., Gel'gor A.L. Dostizhenie maksimal'noj spektral'noj jeffektivnosti putem odnovremennogo uvelichenija razmera signal'nogo sozvezdija i vvedenija upravljaemoj mezhsimvol'noj interferencii. Radiotehnika. 2018. № 1. S. 42–48 (In Russian).
  5. Dvornikov S.V., Pshenichnikov A.V. Formirovanie spektral'no-jeffektivnyh signal'nyh konstrukcij v radiokanalah peredachi dannyh kontrol'no-izmeritel'nyh kompleksov. Izvestija vysshih uchebnyh zavedenij. Ser. Priborostroenie. 2017. T. 60. № 3. S. 221–228 (In Russian).
  6. ETSI EN 302 307-1 v1.4.1 (2014-11): Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications. Part 1: DVB-S2.
  7. ETSI EN 302 755 V1.4.1 (2015-07): Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2).
  8. Nguyen Tan Hoang P., Gelgor A. Means to Enhance the Bandwidth Gain from Applying Multicomponent Signals in DVB-S2. 2019
    IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). 2019. Р. 173-176.
    DOI: 10.1109/EExPolytech.2019.8906865.
  9. Nguyen Tan Hoang P., Gelgor A. Optimization of Shaping Pulse by Spectral Mask to Enhance DVB-S2. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11660 LNCS. 2019. Р. 649-660. DOI: 10.1007/978-3-030-30859-9_56.
  10. Puzko D., Batov Y., Gelgor A., Tkachenko D., Angueira P., Montalban J. Evaluation of Finite Discrete RRC-Pulse Param-eters to Simulate DVB-S2 with LDM. 2019 IEEE Intern. Conf. on Electrical Engineering and Photonics (EExPolytech). St Petersburg, Russia. 17−18 Oct. 2019. IEEE. 2019. P. 140−143. DOI: 10.1109/EExPolytech.2019.8906847.
  11. Gonorovskij I.S. Radiotehnicheskie cepi i signaly: Uchebnik dlja vuzov. Izd-e 4-e, pererab. i dop. M.: Radio i svjaz'. 1986. 512 s.
    (In Russian).
  12. Gurevich M.S. Spektry radiosignalov. M.: Svjaz'izdat. 1963. 312 s. (In Russian).
  13. Shkol'nyj L.A. Optimizacija formy ogibajushhej radioimpul'sa po minimumu vnepolosnyh izluchenij. Radiotehnika. 1975. T. 30. № 6.
    S. 12–15 (In Russian).
  14. Makarov S.B, Zav'jalov S.V. Optimizacija spektral'no-jeffektivnyh mnogochastotnyh neortogonal'nyh signalov. Radiotehnika. 2016.
    № 12. S. 121–133 (In Russian).
  15. Sadovaya Y., Gelgor A. Synthesis of Signals with a Low-Level of Out-of-Band Emission and Peak-to-Average Power Ratio. 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech). 2018. Р. 103-106. DOI: 10.1109/Eex-Polytech.2018.8564428.
  16. Slepian D. On bandwidth. Proc. of the IEEE. 1976. V. 64, № 3. P. 292−300. DOI: 10.1109/ PROC.1976.10110.
  17. Slepian D., Pollak H.O. Prolate spheroidal wave functions, fourier analysis and uncertainty. I. The Bell System Technical J. 1961. V. 40. № 1. P. 43−63. DOI: 10.1002/j.1538-7305.1961.tb03976.x.
Date of receipt: 21.12.2022
Approved after review: 26.12.2022
Accepted for publication: 10.01.2023