350 rub
Journal Radioengineering №9 for 2022 г.
Article in number:
Algorithm for generation the topology of the ultra-wideband radio communication network
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202209-10
UDC: 621.391
Authors:

A.A. Molev1, K.D. Titov2, V.V. Kondaurova3

1-3 MESC of the Air Force «N.E. Zhukovsky and Yu.A. Gagarin Air Force Academy» (Voronezh, Russia)

2,3 Voronezh State University (Voronezh, Russia)

Abstract:

The article presents the results of the development of an algorithm for forming a topology of a radio network using ultra-wideband radio stations, including trunk radio links, communication lines with aircraft and radio links between mobile subscribers. The input data are the initial structure of the control system, the composition of the management directions and the communication nodes included in them and the positions of their location on the ground. The generated structure is a set of relationships between radio stations and communication nodes for a given location area, subscriber locations, communication channels assigned to radio stations in a given area, for radio communication lines of various types - trunk radio links, communication lines with aircraft and radio links between mobile subscribers, in low-range networks. The developed algorithm is based on the solution of subtasks: distribution of working frequencies; determining the possibility of organizing connections between radio stations and constructing communication matrices of radio stations and communication nodes.

To calculate frequency-energy characteristics for estimating the communication range between subscribers, analytical relations of the theory of radio wave propagation for ultra-short-pulse radiation have been developed, which differ from those known in that when calculating the received signal power in the radio communication equation, the possibility of not fulfilling the condition on relative narrow-band signals is taken into account, and antenna characteristics such as the directional action factor of the transmitting antenna and the effective area of the receiving antenna are presented in integral form. In an analytical form, an energy transmission-reception equation of ultra-wideband signals is obtained, which allows evaluating the possibility of communication between radio stations as a function of communication range, signal-to-noise ratio and sensitivity.

The developed algorithm can be used to generate initial data on the structure of ultra-wideband radio communication networks during the study of their functioning - evaluation of speed characteristics, algorithms for transmitting information, estimation of connectivity, to recalculate relationships during movement of subscribers or destructive effects on them, when subscribers work in networks of various scales.

Pages: 85-97
For citation

Molev A.A., Titov K.D., Kondaurova V.V. Algorithm for generation the topology of the ultra-wideband radio communication network. Radiotekhnika. 2022. V. 86. № 9. P. 85−97. DOI: https://doi.org/10.18127/j00338486-202209-10 (In Russian)

References
  1. Jashin A.I., Budko P.A., Vinogradenko A.M., Pedan A.V. Imitacionnoe modelirovanie avtomatizirovannoj sistemy kontrolja tehnicheskogo sostojanija jelementov raspredelennyh radiocentrov. Morskaja radiojelektronika. 2018. № 1(63). S. 32–37 (In Russian).
  2. Severinenko A.M. Algoritm optimal'nogo razmeshhenija bazovyh stancij v setjah podvizhnoj radiosvjazi special'nogo naznachenija, rabotajushhih v slozhnyh fiziko-geograficheskih uslovijah. Radiotehnika. 2017. № 4. S. 116–121 (In Russian).
  3. Molev A.A., Titov K.D. Imitacionnaja model' funkcionirovanija sistemy sverhshirokopolosnoj radiosvjazi v uslovijah vozdejstvija pomeh. Zhurnal radiojelektroniki [jelektronnyj zhurnal]. 2021. № 1. DOI: 10.30898/1684–1719.2021.1.1 (In Russian).
  4. Zajcev I.V., Molev A.A. Programmnyj kompleks imitacionnogo modelirovanija kognitivnyh sistem radiosvjazi v uslovijah vozdejstvija pomeh. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2017. № 10. T. 15. S. 42–52 (In Russian).
  5. Kucherjavyj A.E., Prokop'ev A.V., Kucherjavyj E.A. Samoorganizujushhiesja seti SPb: Ljubavich. 2011. 312 s. (In Russian).
  6. Bard Dzh., Kovarik V.Dzh.-ml. Arhitektura setej svjazi na baze programmiruemyh radiosredstv. M.: Tehnosfera. 2013. 461 s. (In Russian).
  7. Aleksandrov S., Turov D. Perspektivnye sistemy i sredstva i radiosvjazi takticheskogo zvena upravlenija VS SShA. Zarubezhnoe voennoe obozrenie. 2018. № 11. S. 42–48 (In Russian).
  8. Korchagin S., Parshin S. Napravlenija razvitija informacionno-telekommunikacionnogo obespechenija setej boevogo upravlenija suhoputnyh vojsk SShA. Zarubezhnoe voennoe obozrenie. 2019. № 3. S. 40–48 (In Russian).
  9. Agalakov Ju. G. Osobennosti modelirovanija telekommunikacionnyh komponentov avtomatizirovannyh sistem upravlenija. Zhurnal RAN: Informacionnye tehnologii i vychislitel'nye sistemy. 2014. № 2. S. 26–36 (In Russian).
  10. Xu D., Li Y., Li J., Ahmed M., Hui P. Joint Topology Control and Resource Allocation for Network Coding Enabled D2D Traffic Offloading. IEEE Access. 2017. V. 5. P. 22916-22926. DOI: 10.1109/ ACCESS.2017.2753284.
  11. Zajcev I.V., Molev A.A. Ocenka propusknoj sposobnosti kognitivnoj sistemy svjazi v uslovijah vozdejstvija pomeh na ee kljuchevye jelementy. Uspehi sovremennoj radiojelektroniki. 2017. № 5. S. 52−62 (In Russian).
  12. Demichev M.S., Gaipov K.Je., Korolev E.M., Demicheva A.A., Narozhnyj A.I. Formirovanie topologii radioseti s razmeshheniem podvizhnyh radiostancij pri minimizacii moshhnosti izluchenija radiosignalov. Kibernetika i programmirovanie [jelektronnyj zhurnal]. 2018. № 1. S. 1-14. DOI: 10.25136/2306–4196.2018.1.24983 (In Russian).
  13. Budko P.A., Muhin A.V. Formirovanie topologii radioseti podvizhnyh ob’ektov na osnove geoinformacionnyh sistem. Vestnik Stavropol'skogo gosudarstvennogo universiteta. 2009. № 4. S. 118–125 (In Russian).
  14. Zajcev I.V., Molev A.A. Algoritm generacii struktury samoorganizujushhejsja sistemy radiosvjazi na osnove ierarhii sistemy upravlenija. Jelektromagnitnye volny i jelektronnye sistemy. 2021. T. 26. № 6. S. 57−70. DOI: https://doi.org/10.18127/j15604128–202106–06
    (In Russian).
  15. Doluhanov M.P. Rasprostranenie radiovoln. M.: Svjaz'izdat. 1951. 491 s. (In Russian).
  16. Rekomendacija MSJe-R P.676–12 (08/2019). Zatuhanie v atmosfernyh gazah i svjazannoe s nim vozdejstvie. Serija P. Rasprostranenie radiovoln. MSJe: Zheneva. 2021. 32 s. (In Russian).
  17. Rekomendacija MSJe–R P.840-8 (08/2019). Oslablenie iz-za oblachnosti i tumana. Serija P. Rasprostranenie radiovoln. MSJe: Zheneva. 2020. 6 s. (In Russian).
  18. Rekomendacija MSJe-R P.838-3. Model' pogonnogo oslablenija v dozhde, ispol'zuemaja v metodah prognozirovanija. Serija P. Rasprostranenie radiovoln. MSJe: Zheneva. 2005. 9 s. (In Russian).
  19. Rekomendacija MSJe-R P.1546-6 (08/2019). Metod prognozirovanija dlja trass svjazi punkta s zonoj dlja nazemnyh sluzhb v diapazone chastot ot 30 MGc do 4000 MGc. Serija P. Rasprostranenie radiovoln. MSJe: Zheneva. 2020. 59 s. (In Russian).
  20. Zernov N.V., Merkulov G.V. Jenergeticheskie harakteristiki aperturnyh antenn, izluchajushhih negarmonicheskie volny. Radiotehnika. 1991. № 1. S. 68–71 (In Russian).
  21. Zernov N.V. Kojefficient napravlennogo dejstvija i jeffektivnaja ploshhad' aperturnyh antenn pri izluchenii i prieme negarmonicheskih signalov. Radiotehnika. 1995. № 3. S. 51–52 (In Russian).
  22. Avdeev V.B. Uglovye jenergeticheskie harakteristiki napravlennosti nesinhronno vozbuzhdaemoj aperturnoj antenny pri izluchenii i prieme negarmonicheskih signalov. Antenny. 2001. № 1. S. 3–7 (In Russian).
  23. Avdeev V.B. Jenergeticheskie harakteristiki napravlennosti antenn i antennyh sistem pri izluchenii i prieme sverhshirokopolosnyh signalov i sverhkorotkih impul'sov. Antenny. 2002. № 7. S. 5–27 (In Russian).
Date of receipt: 02.06.2022
Approved after review: 17.06.2022
Accepted for publication: 05.09.2022