350 rub
Journal Radioengineering №9 for 2022 г.
Article in number:
Use of the Altai optical-laser center to ensure the safety of navigation systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202209-07
UDC: 681.78
Authors:

V.P. Aleshin1, V.S. Korshunov2, I.L. Pimenov3, V.D. Shargorodsky4, E.V. Shmatko5

1-5 AO NPK SPP (Moscow, Russia)

Abstract:

In the Federal Target Program (FTP) "Maintenance, development and use of the GLONASS system for 2012–2020" and in the Federal Target Program GLONASS for 2021–2030, no work is currently planned to identify threats to the safety of spacecraft space complexes. This problem is especially relevant in recent years in connection with the emergence and testing of micro-satellites for inspection, jamming and destruction of operating spacecraft. The problem is aggravated by the fact that it is not possible to determine the functionality and purpose of a micro-satellite before it begins to manifest active actions and maneuvers. In this regard, it is advisable to create on the territory of the Russian Federation an optoelectronic complex (OEC) for the rapid detection and determination of the motion parameters of small high-orbit space objects (VOCO) in the zones of operation of space complexes of the GLONASS system in order to identify threats to their safety. The safety of spacecraft of space complexes of the GLONASS system plays a decisive role in ensuring the navigation independence of the Russian Federation. It is proposed to create an OEC for detecting small-sized SO (OEC OMVOKO) in the zones of functioning of space complexes of the GLONASS system based on a wide-field 3-meter telescope with its location at the Altai Optical-Laser Center (AOLTs).

Pages: 57-63
For citation

Aleshin V.P., Korshunov V.S., Pimenov I.L., Shargorodsky V.D., Shmatko E.V. Use of the Altai optical-laser center to ensure the safety of navigation systems. Radiotekhnika. 2022. V. 86. № 9. P. 57−63. DOI: https://doi.org/10.18127/j00338486-202209-07 (In Russian)

References
  1. Aleshin V.P., Grishin E.A., Korshunov V.S., Pimenov I.L., Shargorodskij V.D., Integrirovannyj kompleks avtonomnogo obnaruzhenija-raspoznavanija kosmicheskih ob#ektov na baze shirokopol'nogo bystrogo obzornogo teleskopa trehmetrovogo klassa. Nauchnye trudy Instituta astronomii RAN. T. 5(1). M.: Izd-vo Janus-K. 2020. S. 38–41 (In Russian).
  2. Aleshin V.P., Balega Ju.Ju., Beskakotov A.S., D'jachenko S.V., Maksimov A.F. Spekl-interferometrija asteroida 3200 «Fajeton». Nauchnye trudy Instituta astronomii RAN. T. 5(2). M.: Izd-vo Janus-K. 2020. S. 74–77 (In Russian).
  3. Aleshin V.P., Grishin E.A., Ivlev O.A., Novgorodcev D.D., Shargorodskij V.D. Metody i algoritmy rekonstrukcii izobrazhenij kosmicheskih apparatov s lazernym podsvetom v blizhnem IK-diapazone. Vestnik VKO. 2019. №1(21). S. 58–69 (In Russian).
  4. Aleshin V.P., Grishin E.A., Ivlev O.A., Novgorodtsev D.D., Shargorodsky V.D. The speckle-interferometric images modelling of artificial Earth satellites in problems of near-Earth astronomy. Open Astron. 2018. № 27. Р. 120–125. https://doi.org/10.1515/astro-2018-0020.
  5. Aleshin V.P., Balega Ju.Ju., Grishin E.A., Maksimov A.F., D'jachenko V.V., Malogolovec E. V., Komarinskij S.L., Novgorodcev D.D., Shargorodskij V.D., Bol'sheaperturnye teleskopy v zadachah poluchenija izobrazhenij geostacionarnyh kosmicheskih apparatov dlja celej situacionnoj ocenki kosmicheskoj obstanovki. Jelektromagnitnye volny i jelektronnye sistemy. 2011. T. 16. № 3. S. 9–17 (In Russian).
  6. Aleshin V.P., Balega Ju.Ju., Maksimov A.F., Komarinskij S.L., Novgorodcev D.D. Spekl-interferometrija geostacionarnyh ISZ: real'nost' i perspektivy. Vestnik SIBGAU. 2011. Vyp. 6(39). S. 154–158 (In Russian).
  7. Aleshin V.P. Nazemnye sistemy poluchenija opticheskih izobrazhenij kosmicheskih apparatov i obratnye zadachi. Jelektromagnitnye volny i jelektronnye sistemy. 2014. T. 19. S. 60–67 (In Russian).
  8. Aleshin V.P., Novgorodcev D.D., Vygon V.G., Grishin E.A., Dornostup S.A., Simonov G.V., Shargorodskij V.D., Jurasov V.S., Ocenka dvizhenija avarijnyh kosmicheskih apparatov otnositel'no centra mass po real'nym opticheskim nabljudenijam. Jekologicheskij vestnik nauchnyh centrov ChJeS. 2013. T. 2. № 4. S. 7–14.
  9. Aleshin V.P., Grishin E.A., Shargorodsky V.D., Novgorodtsev D.D., Altay Optic-Laser Center Capability To Satellites Emergencies Estimation, 9th US/Russian Space Surveillance Workshop. Listvyanka. Irkutsk. 2012. Р. 1–23.
  10. Terebizh B. Yu «A Wide-field Corrector at the Prime Focus of a Ritchey-Chretien Telescope». Astronomy Letters. 2004. № 30. Р. 200-208. Also available at http://xxx.lanl.gov, paper astro-ph/0402212.
  11. Ackermann M.R.,  Kiziah R.R., Zimmer P.C., Beason J. Douglas, Spillar Earl J., Cox D.D., McGraw J.T., Vestrand W.Th., Weeks M. Alternatives for Ground-Based, Large-Aperture Optical Space Surveillance Systems». AMOS Technical Conference. 2013.
  12. Aleshin V.P., Grishin E.A., Ivlev O.A., Novgorodtsev D.D., Shargorodskii V.D., Large-Aperture Telescopes in the Problems of Near-Earth Astronomy. Kinematics and Physics of Celestial Bodies. 2016. V. 32. № 5. Allerton Press, Inc. 2016. Р. 256–260.
Date of receipt: 15.08.2022
Approved after review: 18.08.2022
Accepted for publication: 31.08.2022