350 rub
Journal Radioengineering №8 for 2022 г.
Article in number:
The Arctic and Southwestern part of Siberia regions soil’s dielectric characteristics
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202208-04
UDC: 621.317.335.3
Authors:

S.A. Varnakov1, K.N. Suslov2, A.S. Yashchenko3, S.V. Krivaltsevich4

1-4 Omsk Scientific Center SB RAS (Institute of Radiophysics and Physical Electronics) (Omsk, Russia)

Abstract:

The International Telecommunication Union recommends using the Dobson’s model to estimate the radiophysical characteristics of the underlying surface. This model was developed based on the experimental data obtained at frequencies above 1 GHz for five types of soils in the temperate climate zone. It can be difficult to calculate the complex permittivity of the other climatic zones soils using this model. The largest error in the calculation of the permittivity according to the Dobson model occurs at frequencies below 1 GHz. In addition, other models of soil permittivity are known. So, the Mironov model was developed on the basis of a statistical analysis of data obtained for dozens of soil types in the temperate climate zone and the Arctic. However, it is also applicable for frequencies related to the microwave range of waves. The dielectric data at frequencies related to the VHF range were obtained only for certain types of soils and artificial mixtures. We were obtained the data on the complex permittivity of the Arctic and the south of Western Siberia soil's in the frequency range from 0.1 to 4 GHz. It was found that the view of the experimentally measured and theoretically calculated dependences of the permittivity on moisture, corresponding to different types of soils, differ markedly from each other. The empirical dependences can be used to assess the radiophysical characteristics of some types of Arctic wet soils and loamy soils in the south part of Western Siberia in the frequency range from 0.1 to 4 GHz. It is can be used in assessing the characteristics of radio paths, processing data obtained from satellite radiometers and radars, geolocation sensing, etc.

Pages: 37-44
For citation

Varnakov S.A., Suslov K.N., Yashchenko A.S., Krivaltsevich S.V. The Arctic and Southwestern part of Siberia regions soil’s dielectric characteristics. Radiotekhnika. 2022. V. 86. № 8. P. 37−44. DOI: https://doi.org/10.18127/j00338486-202208-04 (In Russian)

References
  1. Sommerfeld A.N. Propagation of Waves in Wireless Telegraphy. Ann. Phys. (Leipzig). 1909. V. 28. P. 665-737.
  2. Анализ моделей диэлектрической проницаемости водной среды, используемых в задачах дистанционного зондирования акваторий URL: http://www.iki.rssi.ru/books/2013sadovsky.pdf (date of access: 22.06.2022).
  3. Leshhanskij Ju.I., Lebedeva G.N., Shumilin V.D. Jelektricheskie parametry peschanogo i glinistogo gruntov v diapazone santimetrovyh, decimetrovyh i metrovyh voln. Izvestija vysshih uchebnyh zavedenij. Ser. Radiofizika. 1971. T. 14. № 4. S. 562–569 (In Russian).
  4. Wang J., Schmugge T., Williams D. Dielectric constants of soils at microwave frequencies II. Technical report 1238. National Administration. NASA. 1978.
  5. Electrical characteristics of the surface of the Earth. URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.527-6-202109-I!!PDF-E.pdf (дата доступа: 22.06.2022).
  6. Peplinski N.R., Ulaby F.T., Dobson M.C. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans Geosci. and Remote Sens. 1995. V. 33. № 3. P. 803-807.
  7. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document
  8. Level 2 & 3 Soil Moisture (Passive) Data Products URL: file:///D:/SMAP/2021/484_L2_SM_P_ATBD_rev_F_final_Aug2020.pdf (дата доступа: 22.06.2022).
  9. Mironov V.L., Bobrov P.P., Fomin S.V. Multirelaxation Generalized Refractive Mixing Dielectric Model of Moist Soils. IEEE Geoscience and Remote Sensing Letters. 2013. V. 10. № 3. P. 603–606.
  10. Bobrov P.P., Repin A.V., Rodionova O.V. Wideband Frequency Domain Method of Soil Dielectric Property Measurements. IEEE Trans. Geosci. Remote Sens. 2015. V. 53. № 5. P. 2366–2372.
  11. Bobrov P.P., Krasnouhova V.N., Kroshka E.S., Lapina A.S. Modelirovanie processov dijelektricheskoj relaksacii vo vlazhnyh peschanyh porodah. Izvestija vysshih uchebnyh zavedenij. Ser. Fizika. 2017. T. 60. № 4. S. 135-140 (In Russian).
  12. Edinyj gosudarstvennyj reestr pochv Rossii. Torfjanye bolotnye degradirujushhie (mineralizujushhiesja). URL: http://egrpr.esoil.ru/content/soils/soil163.html (data dostupa: 22.06.2022) (In Russian).
  13. Edinyj gosudarstvennyj reestr pochv Rossii. Tundrovye poverhnostno-gleevye differencirovannye torfjanisto-peregnojnye (gleezemy differencirovannye, v tom chisle opodzolennye tundrovye). URL: http://egrpr.esoil.ru/content/soils/soil010.html (data dostupa: 22.06.2022).
  14. Edinyj gosudarstvennyj reestr pochv Rossii. Chernozemy soloncevatye. URL: http://egrpr.esoil.ru/content/soils/soil132.html (data dostupa: 22.06.2022) (In Russian).
Date of receipt: 04.07.2022
Approved after review: 21.07.2022
Accepted for publication: 25.07.2022