350 rub
Journal Radioengineering №7 for 2022 г.
Article in number:
Approaches to variation of the profile of the radiating opening of a diffractive antenna radiation to improve directional characteristics
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202207-05
UDC: 621.396.67
Authors:

D.Yu. Kryukov1, A.V. Ostankov2, S.A. Antipov3, K.A. Razinkin4

1-4 Voronezh State Technical University (Voronezh, Russia)

Abstract:

Formulation of the problem. The effectiveness of most modern radio engineering systems and complexes in the setting of SHF (microwave) and EHF is impossible without the use of antennas with a high efficiency, capable of forming directional patterns in highly directional beams. The use of a uniform profile of the radiating aperture in antennas of a leaky wave of the diffraction type for most real technical problems is not advantageous and does not allow realizing the best characteristics for the operating conditions of the antenna. In this connection, the task of establishing the best pattern for changing the profile of the radiating aperture, which makes it possible to provide the required width of the main lobe of the radiation pattern at a low level of lateral radiation, seems to be very relevant.

Purpose. Presentation of basic techniques for designing diffraction-type leaky-wave antennas with an uneven profile of the studying opening and development of recommendations for improving the directivity characteristics by changing the depth of the grooves and varying the longitudinal direction of the impact distance.

Results. Techniques and recommendations are proposed that make it possible to implement the structural-parametric synthesis of antennas of a leaky wave of a diffraction type with a non-uniform profile of the radiating aperture. Based on experimental studies, it has been established that depth profiling makes it possible to correct the amplitude distribution in the aperture of the antenna sheet and ensure better matching of a planar dielectric waveguide with a diffraction grating. At the same time, for a distribution-radiating system consisting of 30 grooves with a period of 10 mm, at a frequency of 24 GHz, the level of side lobes was «minus» 18.4 dB, and the gain was 25.4 dB. At the same time, it was found that the variation of the aiming distance makes it possible to improve the initial directivity of the antenna by increasing the degree of radiation concentration within the main lobe of the directivity pattern and reducing the level of the side lobes, as well as to increase the antenna gain. It has been experimentally established that when the aiming distance is changed in accordance with the found regularity, it is possible to reduce the level of side lobes by 66% and simultaneously increase the gain by 7% compared to the case of a constant aiming distance.

Practical importance. The use of the presented techniques makes it possible to implement the synthesis of highly efficient antennas of a diffraction-type leaky wave. The results of electrodynamic modeling make it possible to assess the degree of possible improvement in the characteristics of antennas when using a non-uniform profile of the radiating aperture. Practical recommendations for choosing the design parameters of diffraction-type leaky-wave antennas can be used to build promising wireless communication systems.

 

Pages: 25-32
For citation

Kryukov D.Yu., Ostankov A.V., Antipov S.A., Razinkin K.A. Approaches to variation of the profile of the radiating opening of a diffractive antenna radiation to improve directional characteristics. Radiotekhnika. 2022. V. 86. № 7. P. 25−32.
DOI: https://doi.org/10.18127/j00338486-202207-05 (In Russian)

References
  1. Ostankov A.V. Analiz i optimizacija difrakcionnoj antenny poverhnostnoj volny. Antenny. 2010. № 9(160). S. 44-53 (In Russian).
  2. Steshenko S., Kirilenko A.A., Boriskin A.V., Zhadobov M., Sauleau R. Advanced Modeling of choke ring antennas for MM-wave applications. 6th European Conference on Antennas and Propagation (EUCAP-2012). 2012. P. 650-654.
  3. Steshenko S.A. Sintez antenny vytekajushhih voln po zadannomu raspredeleniju polja na aperture. Radiofizika i radioastronomija. 2013. T. 18. № 4. C. 373-380 (In Russian).
  4. Wang D., Gillard R., Loison R. A notched dielectric resonator antenna unit-cell for 60 GHz passive repeater with endfire radia-tion. European Conference on Antennas and Propagation (EUCAP-2014). 2014. P. 3167-3170.
  5. Cai B.G., Li Y.B., Ma H.F., Jiang W.X., Cheng Q., Cui T.J. Leaky-wave radiations by modulating surface impedance on sub-wavelength corrugated metal structures. Scientific Reports. 2016. V. 6. Iss. 1. P. 23974.
  6. Kryukov D.Yu., Ostankov A.V. Uluchshenie pokazatelej napravlennosti antenny difrakcionnogo izluchenija metodom variacii profilja izluchajushhego raskryva. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2022. T. 18. №1. S. 79-90 (In Russian).
  7. Ostankov A.V. Jelektrodinamicheskie modeli rezonansnyh grebenchatyh struktur dlja analiza i sinteza vysokojeffektivnyh difrakcionnyh antenn: Avtoref. diss. … dokt. tehn. nauk. Voronezh: FGBOU VPO «Voronezhskij gosudar-stvennyj tehnicheskij universitet». 2011. 415 s. (In Russian).
  8. Ostankov A.V. Sintez izluchajushhego grebenchatogo raskryva antenny vytekajushhej volny. Radiotehnika. 2012. № 2. S. 38-44 (In Russian).
  9. Kryukov D.Yu., Ostankov A.V. Optimizacija harakteristik antenny difrakcionnogo izluchenija za schet glubinnogo profilirovanija odnomernoj kvaziperiodicheskoj grebenchatoj reshetki. Sb. dokl. 23-j Mezhdunar. nauch.-tehn. konf. «Ra-diolokacija, navigacija, svjaz'». Voronezh. 2017. T. 3. S. 1054-1060 (In Russian).
  10. Kryukov D.Yu., Ostankov A.V. Osobennosti ucheta konechnyh razmerov dijelektricheskogo volnovoda i uslovij ego neso-vershennogo vozbuzhdenija v jelektrodinamicheskoj modeli antenny difrakcionnogo izluchenija. Sb. trudov 24-j Mezh-dunar. nauch.-tehn. konf. «Radiolokacija, navigacija, svjaz'». V 5-ti tomah. Voronezh. 2018. S. 188-200 (In Russian).
  11. Virsanski Je. Geneticheskie algoritmy na Python. Per. s angl. A.A. Slinkina. M.: DMK Press. 2020. 286 s. (In Russian).
  12. Evdokimov A.P., Kryzhanovskij V.V. Ploskie antennye reshetki s kosekansnoj formoj diagrammy napravlennosti 8-millimetrovogo diapazona voln. Jelektromagnitnye volny i jelektronnye sistemy. 2003. T. 8. № 10. S. 52-58 (In Russian).
  13. Evdokimov A.P., Kryzhanovskij V.V. Difrakcionnye javlenija v antennah vytekajushhih voln. Antenny. 2003. № 3-4(70-71). S. 50-56 (In Russian).
  14. Melezhik P.N., Sidorenko Ju.B., Provalov S.A., Andrenko S.D., Shilo S.A. Ploskostnaja antenna difrakcionnogo izluchenija radiolokacionnogo kompleksa millimetrovogo diapazona. Izvestija vuzov. Ser. Radiojelektronika. 2010. T. 53. № 5. S. 12-21 (In Russian).
  15. Ustrojstva SVCh i antenny. Proektirovanie fazirovannyh antennyh reshetok. Pod red. D.I. Voskresenskogo. M.: Radiotehnika. 2012. 744 s. (In Russian).
  16. Aktivnye fazirovannye antennye reshetki. Pod red. D.I. Voskresenskogo, A.I. Kanashhenkova. M.: Radiotehnika. 2004. 487 s. (In Russian).
  17. Kryukov D.Yu., Ostankov A.V. Uluchshenie pokazatelej napravlennosti antenny difrakcionnogo izluchenija metodom variacii profilja izluchajushhego raskryva. Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. 2022. T. 18. № 1. S. 79-90 (In Russian).
Date of receipt: 20.05.2022
Approved after review: 31.05.2022
Accepted for publication: 28.06.2022