350 rub
Journal Radioengineering №6 for 2022 г.
Article in number:
Broadband scanning integrated lens antenna for 5G millimeter-wave applications
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202206-15
UDC: 621.396.67
Authors:

V.M. Seleznev

Lobachevsky University (Nizhny Novgorod, Russia)

Abstract:

Problem statement. One of the promising approaches to the construction of fifth-generation mobile communication systems (5G) is the deployment of heterogeneous networks (HetNet), in which millimeter-wave small cells are placed in “hotspots” and overlaid on conventional macro-cells operating in frequency bands below 6 GHz. At the same time, the deployment of such heterogeneous networks in an urban environment imposes special requirements on the receiving and transmitting antenna equipment. Particularly, the antennas used in radio relay stations should have a wide operating band, a high gain, as well as the possibility of electronic beam scanning.

Objective. The purpose of this paper was to develop a scanning antenna system of the 60 GHz band containing a toroidal-elliptical lens made of high-density polyethylene (HDPE) integrated with an irradiator in the form of a compact phased array antenna (PAA) module. This paper focuses mainly on the study of the frequency properties of a toroidal-elliptical lens antenna since this is of particular practical interest for broadband applications of the IEEE 802.11ad and IEEE 802.11ay standards.

Results. The results of experimental studies have shown that the developed lens antenna within the band of 57.24-65.88 GHz, divided in accordance with IEEE 802.11ad and IEEE 802.11ay standards into four channels with a bandwidth of 2.16 GHz, has a high gain of 21.8-24.8 dBi and is capable of performing electronic beam scanning in the azimuthal plane in the ±35° sector.

Practical significance. The claimed lens antenna can be used in reconfigurable backhauling networks of millimeter-wave relay stations transmitting data over distances of 100-150 m at a speed of 2.5-4.62 Gbps.

Pages: 122-130
For citation

Seleznev V.M. Broadband scanning integrated lens antenna for 5G millimeter-wave applications. Radiotekhnika. 2022. V. 86. № 6. P. 122−130. DOI: https://doi.org/10.18127/j00338486-202206-15

References
  1. Okasaka S. et al. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular. Sensors. 2016.
    DOI: 10.3390/s16091362.
  2. Sakaguchi K. et al. Where, When, and How mmWave is Used in 5G and Beyond. IEICE Transactions on Electronics. 2017.
    V. E100.C, № 10. P. 790–808. DOI: 10.1587/transele.E100.C.790.
  3. Artemenko A., Mozharovskiy A., Maltsev A., Maslennikov R., Sevastyanov A., Ssorin V. Experimental Characterization of E-Band Two-Dimensional Electronically Beam-Steerable Integrated Lens Antennas. IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 1188–1191. DOI: 10.1109/LAWP.2013.2282212.
  4. Lamminen A.E.I. et al. Beam-Switching Dual-Spherical Lens Antenna with Low Scan Loss at 71–76 GHz. IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 10. P. 1871–1875. DOI: 10.1109/LAWP.2018.2868543.
  5. Saleem M.K., Vettikaladi H., Alkanhal M.A.S., Himdi M. Lens Antenna for Wide Angle Beam Scanning at 79 GHz for Automotive Short Range Radar Applications. IEEE Transactions on Antennas and Propagation. 2017. V. 65. № 4. P. 2041–2046.
    DOI: 10.1109/TAP.2017.2669726.
  6. Li Y., Ge L., Chen M., Zhang Z., Li Z., Wang J. Multibeam 3-D-Printed Luneburg Lens Fed by Magnetoelectric Dipole Antennas
    for Millimeter-Wave MIMO Applications. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 5. P. 2923–2933.
    DOI: 10.1109/TAP.2019.2899013.
  7. Nayeri P., Yang F., Elsherbeni A.Z. Bifocal Design and Aperture Phase Optimizations of Reflectarray Antennas for Wide-Angle Beam Scanning Performance. IEEE Transactions on Antennas and Propagation. 2013. V. 61. № 9. P. 4588–4597.
    DOI: 10.1109/TAP.2013.2264795.
  8. Visentin T., Keusgen W., Weiler R. Dual-Polarized Square-Shaped Offset-Fed Reflectarray Antenna with High Gain and High Bandwidth in the 60 GHz Domain. In 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal. 2015. P. 1–5.
  9. Yang J., Shen Y., Wang L., Meng H., Dou W., Hu S. 2-D Scannable 40-GHz Folded Reflectarray Fed by SIW Slot Antenna in
    Single-Layered PCB. IEEE Transactions on Microwave Theory and Techniques. 2018. V. 66. № 6. P. 3129–3135.
    DOI: 10.1109/TMTT.2018.2818698.
  10. Nikfalazar M. et al. Beam Steering Phased Array Antenna with Fully Printed Phase Shifters Based on Low-Temperature Sintered BST-Composite Thick Films. IEEE Microwave and Wireless Components Letters. 2016. V. 26. № 1. P. 70–72.
    DOI: 10.1109/LMWC.2015.2505633.
  11. Zhang W., Liu Y., Jia Y. Circularly Polarized Antenna Array with Low RCS Using Metasurface-Inspired Antenna Units. IEEE
    Antennas and Wireless Propagation Letters. 2019. V. 18. № 7. P. 1453–1457. DOI: 10.1109/LAWP.2019.2919716.
  12. Jafargholi A., Jafargholi A., Choi J.H. Mutual Coupling Reduction in an Array of Patch Antennas Using CLL Metamaterial
    Superstrate for MIMO Applications. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 1. P. 179–189.
    DOI: 10.1109/TAP.2018.2874747.
  13. Xi Q., Ma C., Li H., Zhang B., Li C., Ran L. A Reconfigurable Planar Fresnel Lens for Millimeter-Wave 5G Frontends. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 11. P. 4579–4588, DOI: 10.1109/TMTT.2020.3025337.
  14. Tang X.L., Zhang Q., Chen Y., Liu H. Single-Layer Fixed-Frequency Beam-Scanning Goubau-Line Antenna Using Switched PIN Diodes. IEEE Microwave and Wireless Components Letters. 2019. V. 29. № 6. P. 430–432. DOI: 10.1109/LMWC.2019.2913779.
  15. Li X., et al. Broadband Electronically Scanned Reflectarray Antenna with Liquid Crystals. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 3. P. 396–400. DOI: 10.1109/LAWP.2021.3051797.
  16. Maltsev A., Lomayev A., Pudeyev A., Bolotin I., Bolkhovskaya O., Seleznev V. Millimeter-wave Toroidal Lens-Array Antennas Experimental Measurements. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA. 2018. P. 607–608. DOI: 10.1109/APUSNCURSINRSM.2018.8608633.
  17. Hill T.A., Kelly J.R., Khalily M., Brown T.W.C. Cascaded Fresnel Lens Antenna for Scan Loss Mitigation in Millimeter Wave Access Points. IEEE Transactions on Antennas and Propagation. 2020. V. 68. № 10. P. 6879–6892. DOI: 10.1109/TAP.2020.2992837.
  18. Maltsev A., Bolkhovskaya O., Seleznev V. Scanning Toroidal Lens-Array Antenna with a Zoned Profile for 60 GHz Band. IEEE Antennas and Wireless Propagation Letters. 2021. V. 20. № 7. P. 1150–1154. DOI: 10.1109/LAWP.2021.3073913.
  19. Milligan T.A. Modern Antenna Design. 2nd ed., Wiley-IEEE Press. 2005. 633 p.
  20. Pan H.K., Horine B.D., Ruberto M., Ravid S. Mm-wave Phased Array Antenna and System Integration on Semi-Flex Packaging.
    IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane. WA, USA. 2011. P. 2059–2062.
    DOI: 10.1109/APS.2011.5996913.
  21. Yang F., Wu X., Zhou J., Shao H. Beam-Scanning Lens Antenna Based on Corrugated Parallel-Plate Waveguides. IEEE Antennas and Wireless Propagation Letters. 2018. V. 17. № 7. P. 1296–1299. DOI: 10.1109/LAWP.2018.2842742.
  22. Wang H.-F., Wang Z.-B., Wu Z.-H., Zhang Y.-R. Beam-Scanning Lens Antenna Based on Elliptical Paraboloid Phase Distribution Metasurfaces. IEEE Antennas and Wireless Propagation Letters. 2019. V. 18. № 8. P. 1562–1566. DOI: 10.1109/LAWP.2019.2922695.
  23. Karki S.K., Ala-Laurinaho J., Viikari V. Low-Profile Scanloss-Reduced Integrated Metal-Lens Antenna // IEEE Transactions on Antennas and Propagation. Feb. 2022. V. 70. № 2. Р. 876-887. DOI: 10.1109/TAP.2021.3111192.
Date of receipt: 28.01.2022
Approved after review: 08.02.2022
Accepted for publication: 04.06.2022
Download